Abstract:
A spin coater that can be used to apply multiple coating compositions over an optical substrate, is described. The spin coater includes, a coater bowl configured to collect excess coating material expelled from an optical substrate being coated, a rotatable chuck configured to receive and rotate the optical substrate in the bowl during coating, a plurality of coating reservoirs, each containing a coating material, and an indexable coating reservoir platform containing the plurality of reservoirs and configured to index a selected reservoir into a dispensing position above the coater bowl. The spin coater can include or have associated therewith at least one curing station, in which each curing station is independently configured to cure at least partially at least one applied coating material. Each curing station can include at least one of, a thermal curing station, a UV curing station, and/or an IR curing station.
Abstract:
A spin coater that can be used to apply multiple coating compositions over an optical substrate, is described. The spin coater includes, a coater bowl configured to collect excess coating material expelled from an optical substrate being coated, a rotatable chuck configured to receive and rotate the optical substrate in the bowl during coating, a plurality of coating reservoirs, each containing a coating material, and an indexable coating reservoir platform containing the plurality of reservoirs and configured to index a selected reservoir into a dispensing position above the coater bowl. The spin coater can include or have associated therewith at least one curing station, in which each curing station is independently configured to cure at least partially at least one applied coating material. Each curing station can include at least one of, a thermal curing station, a UV curing station, and/or an IR curing station.
Abstract:
A spin coater that can be used to apply multiple coating compositions over an optical substrate, is described. The spin coater includes, a coater bowl configured to collect excess coating material expelled from an optical substrate being coated, a rotatable chuck configured to receive and rotate the optical substrate in the bowl during coating, a plurality of coating reservoirs, each containing a coating material, and an indexable coating reservoir platform containing the plurality of reservoirs and configured to index a selected reservoir into a dispensing position above the coater bowl. The spin coater can include or have associated therewith at least one curing station, in which each curing station is independently configured to cure at least partially at least one applied coating material. Each curing station can include at least one of a thermal curing station, a UV curing station, and/or an IR curing station.
Abstract:
A spin coater that can be used to apply multiple coating compositions over an optical substrate, is described. The spin coater includes, a coater bowl configured to collect excess coating material expelled from an optical substrate being coated, a rotatable chuck configured to receive and rotate the optical substrate in the bowl during coating, a plurality of coating reservoirs, each containing a coating material, and an indexable coating reservoir platform containing the plurality of reservoirs and configured to index a selected reservoir into a dispensing position above the coater bowl. The spin coater can include or have associated therewith at least one curing station, in which each curing station is independently configured to cure at least partially at least one applied coating material. Each curing station can include at least one of, a thermal curing station, a UV curing station, and/or an IR curing station.
Abstract:
A spin coater that can be used to apply multiple coating compositions over an optical substrate, is described. The spin coater includes, a coater bowl configured to collect excess coating material expelled from an optical substrate being coated, a rotatable chuck configured to receive and rotate the optical substrate in the bowl during coating, a plurality of coating reservoirs, each containing a coating material, and an indexable coating reservoir platform containing the plurality of reservoirs and configured to index a selected reservoir into a dispensing position above the coater bowl. The spin coater can include or have associated therewith at least one curing station, in which each curing station is independently configured to cure at least partially at least one applied coating material. Each curing station can include at least one of, a thermal curing station, a UV curing station, and/or an IR curing station.
Abstract:
A spin coater (10) that can be used to apply multiple coating compositions over an optical substrate, is described. The spin coater includes, a coater bowl (50) configured to collect excess coating material expelled from an optical substrate being coated, a rotatable chuck (40) configured to receive and rotate the optical substrate in the bowl during coating, a plurality of coating reservoirs, (80) each containing a coating material, and an indexable coating reservoir platform (60) containing the plurality of reservoirs and configured to index a selected reservoir into a dispensing position above the coater bowl. The spin coater can include or have associated therewith at least one curing station (92, 94, 96), in which each curing station is independently configured to cure at least partially at least one applied coating material. Each curing station can include at least one of, a thermal curing station, a UV curing station, and/or an IR curing station.
Abstract:
A spin coater that can be used to apply multiple coating compositions over an optical substrate, is described. The spin coater includes, a coater bowl configured to collect excess coating material expelled from an optical substrate being coated, a rotatable chuck configured to receive and rotate the optical substrate in the bowl during coating, a plurality of coating reservoirs, each containing a coating material, and an indexable coating reservoir platform containing the plurality of reservoirs and configured to index a selected reservoir into a dispensing position above the coater bowl. The spin coater can include or have associated therewith at least one curing station, in which each curing station is independently configured to cure at least partially at least one applied coating material. Each curing station can include at least one of, a thermal curing station, a UV curing station, and/or an IR curing station.