Abstract:
Alkylation systems and processes are provided herein that include a slurry reactor. The slurry reactor receives a reactor feed slurry including catalyst and liquid isobutane, a olefin feed, and a circulating reactor vapor stream, where the slurry reactor produces a reactor liquid effluent stream, the reactor liquid effluent stream including catalyst, isobutane, and a liquid alkylate product. The catalyst in the reactor feed slurry can be regenerated catalyst from a catalyst regenerator. The catalyst can be regenerated after being removed from the liquid alkylate product and isobutane in the reactor liquid effluent stream.
Abstract:
The present invention provides a reactor system (10) having: (1) a plurality of reactors (12) connected in fluid flow communication and having at least one pair of reactors (12a,b) separated by an interstage position (33); (2) a line (25) for supplying a reactant feed stream separately to an inlet (21) of more than one of the plurality of reactors (12a,b); and (3) a diverter (30) in fluid communication with the interstage position (33) and capable of directing a first portion of a product stream (32a) exiting one reactor (12a) in said pair of reactors (12a,b) to a first location (40) and a second portion of the product flow stream to an inlet (21b) of another reactor (12b) in said pair of reactors (12a,b).
Abstract:
A process and apparatus is presented for the improved selectivity of oxygenate conversion to olefins. The process includes passing a process stream through a two stage reactor, wherein the process stream is separated from the catalyst in the first stage before passing the process stream to the second stage. The catalyst is continuously passed through the two stages, and cycles through a regeneration unit to control the carbon content on the catalyst.
Abstract:
La presente invención se refiere a procesos de alta eficiencia para la producción de olefinas, alquinos y a la coproducción de hidrógeno a partir de hidrocarburos ligeros. En una modalidad de la presente invención, el método incluye las etapas de realizar la combustión de hidrógeno y oxígeno en una zona de combustión de un reactor pirolítico para crear una corriente de gas de combustión, realizar la transición y/o pasar de la velocidad de corriente de gas de combustión de subsónica a supersónica en una zona de expansión del reactor pirolítico, inyectar un hidrocarburo ligero en la corriente de gas de combustión supersónica para crear una corriente de mezclado que incluye el hidrocarburo ligero, realizar la transición y/o pasar la velocidad de la corriente de mezclado de supersónica a subsónica en una zona de reacción del reactor pirolítico para producir acetileno, y catalíticamente hidrogenar el acetileno en una zona de hidrogenación para producir etileno. En ciertas modalidades de realización, la eficiencia de carbono se mejorados por medio de técnicas de metanización.
Abstract:
High efficiency processes for producing olefins, alkynes, and hydrogen co-production from light hydrocarbons are disclosed. In one version, the method includes the steps of combusting hydrogen and oxygen in a combustion zone of a pyrolytic reactor to create a combustion gas stream, transitioning a velocity of the combustion gas stream from subsonic to supersonic in an expansion zone of the pyrolytic reactor, injecting a light hydrocarbon into the supersonic combustion gas stream to create a mixed stream including the light hydrocarbon, transitioning the velocity of the mixed stream from supersonic to subsonic in a reaction zone of the pyrolytic reactor to produce acetylene, and catalytically hydrogenating the acetylene in a hydrogenation zone to produce ethylene. In certain embodiments, the carbon efficiency is improved using methanation techniques.
Abstract:
A reactor comprising a thermal barrier surrounding a combustion zone. The reactor further comprises a cooling jacket inner wall and a binder disposed between the cooling jacket inner wall and the thermal barrier, and a cooling jacket outer wall, wherein the cooling jacket inner wall and the cooling jacket outer wall define a cooling channel. The reactor further comprises an outer reactor wall disposed over the cooling jacket outer wall, wherein the outer reactor wall is impermeable and is configured to contain high pressure gas within the reactor.
Abstract:
Apparatuses and associated methods for forming olefins from saturated hydrocarbon feedstock are disclosed herein. In one embodiment, a carrier gas is introduced at a supersonic velocity to a feedstock injector section. A feedstock gas is introduced to the carrier gas stream using feedstock injectors that are offset in the streamwise direction one from another. The upstream feedstock injectors are positioned to inject feedstock gas to create plumes that improve penetration depth of the feedstock gas and reduce pressure losses at the downstream feedstock injectors. The feedstock gas can be regeneratively preheated by cooling the convergent-divergent nozzle. Water, steam and/or hydrogen gas can be injected into the apparatus for cooling the throat of the convergent-divergent nozzle.