Abstract:
An image capturing device (202) can include a sensor array (210), a lens (230) positioned at a first distance from an intermediate image (235), and apolychromat (220) positioned at a second distance from the lens (230). The polychromat (220) can diffract the intermediate image (235) according to a transform function (207) to produce a dispersed sensor image (215) onto the sensor array (210). The dispersed sensor image (215) can represent a spatial code of the intermediate image (235).
Abstract:
A system for determining a spectrum includes an interface and a processor. The interface is configured to receive a sample set of intensity data for an array of spatial locations and a set of spectral configurations. The processor is configured to determine a region of interest using the sample set of intensity data and determine a spectral peak for the region of interest.
Abstract:
A reconstruction method for spectral image includes: obtaining a measurement image of an imaging object, and reconstructing and obtaining a spectral image of the imaging object according to the measurement image and a pre-calibrated sensing matrix. The spectral image includes spectral information at different position points of the imaging object. Through the method, defects of the time-consuming spectral image reconstruction method and the low resolution of the obtained spectral image in the related art can be overcame and the spectral image of the target imaging object can be obtained by reconstructing quickly and the obtained spectral image has high spatial resolution and no mosaic.
Abstract:
In accordance with an embodiment, a measurement apparatus includes a library creation unit, a spectral profile acquiring unit, and a measurement unit. The library creation unit creates a library in which a layer stack model is matched to a theoretical profile regarding a pattern of stacked layers. The spectral profile acquiring unit acquires an actual measured profile by applying light to a measurement target pattern obtained when the pattern is actually created. The measurement unit measures the sectional shape of the measurement target pattern by performing fitting of the theoretical profile to the actual measured profile. The layer stack model is created by calculating a feature value that reflects the intensity of reflected light from an interface for each of the layers, determining a priority order of analysis from the feature value, and sequentially performing fitting of the theoretical profile to the measured profile in the determined priority order.
Abstract:
A method is presented for spectral reconstruction which comprises first obtaining component concentrations of a series of mixtures, which component concentrations constitute a set of reference values. The spectral value of each member of that series of mixtures is measured at a first wavelength, which spectral value possesses contribution from individual components in the mixture, whose individual contribution is unknown. The spectral values for the series of mixtures are then mathematically cross-correlated with the component concentrations in said series of mixtures, at the first wavelength, thereby obtaining the spectral contribution for said components at that first wavelength. The spectral value of each member of that series of mixtures is measured at the second wavelength, which spectral values are then cross-correlated with component concentrations in the series of mixtures thereby obtaining the spectral contribution for said components at the second wavelength. This operation is repeated for a series of wavelengths until the spectrum of the desired component in the mixture is reconstructed. Devices are presented which implement the methods for spectral reconstruction of the present invention.
Abstract:
A totagram is produced by an iterative spectral phase recovery process resulting in complete information recovery using special masks, without a reference beam. Using these special masking systems reduce computation time, number of masks, and number of iterations. The special masking system is (1) a unity mask together with one or more bipolar binary masks with elements equal to 1 and −1, or (2) a unity mask together with one or more phase masks, or (3) a unity mask together with one pair of masks or more than one pair of masks having binary amplitudes of 0's and 1's, in which the masks in the pair are complementary to each other with respect to amplitude, or (4) one or more pairs of complementary masks with binary amplitudes of 0's and 1's without a unity mask.
Abstract:
An optical module includes a micro spectrometer. The micro spectrometer includes an optical crystal, a lens, and a photosensitive assembly. The optical crystal is configured to receive detection light and covert the detection light into interference light. The optical crystal is surrounded by a sleeve, the sleeve configured to fix a position of the optical crystal. The lens is configured for receiving the interference light and focusing the interference light. The photosensitive assembly is configured for imaging the interference light into an interference image. The optical module further comprises a controller. The controller is electrically connected to the photosensitive assembly, and the controller is used to convert the interference image into light wavelength signals and light intensity signals.