Abstract:
Compositions comprising Hirsutella sinensis mycelia extracts and chromatographically separated polysaccharide-enriched fractions thereof are provided. Methods for extracting Hirsutella sinensis mycelia are provided. Compositions for methods for their use in amelioration, prevention and treatment of sepsis, acute endotoxemia and inflammatory responses are disclosed.
Abstract:
A Schottky field effect transistor is provided that includes a substrate having a layer of semiconductor material atop a dielectric layer, wherein the layer of semiconductor material has a thickness of less than 10.0 nm. A gate structure is present on the layer of semiconductor material. Raised source and drain regions comprised of a metal semiconductor alloy are present on the layer of semiconductor material on opposing sides of the gate structure. The raised source and drain regions are Schottky source and drain regions. In one embodiment, a first portion of the Schottky source and drain regions that is adjacent to a channel region of the Schottky field effect transistor contacts the dielectric layer, and a non-reacted semiconductor material is present between a second portion of the Schottky source and drain regions and the dielectric layer.
Abstract:
Novel method and reagents for generating reversibly tagged saccharides, aldehydes, carboxyl acids, or orthoacetates useful in analytical and diagnostic applications are disclosed. Saccharides are coupled at the reducing end to tagging moieties comprising a reagent selected from a ortho-diaminobenzoic(DAB)-peptide, an aldo-imidazole or N-methylated aldo-imidazole, or an ortho-phenyldiamine (OPD) or substituted OPD. The tagged saccharide further comprising detectable or functional groups coupled to the tagging moiety are provided. Kits and reagents for chromatography and mass spectrometry are disclosed.
Abstract:
A method for forming a silicide contact includes depositing a metal layer on silicon such that the metal layer intermixes with the silicon to form an intermixed region on the silicon; removing an unintermixed portion of the metal layer from the intermixed region; and annealing the intermixed region to form a silicide contact on the silicon. A semiconductor device comprising a silicide contact located over a silicon layer of the semiconductor device, the silicide contact comprising nickel (Ni) and silicon (Si) and having Ni amount equivalent to a thickness of about 21 angstroms or less.
Abstract:
Apparatus for semiconductor device structures and related fabrication methods are provided. One method for fabricating a semiconductor device structure involves forming a gate structure overlying a region of semiconductor material, wherein the width of the gate structure is aligned with a crystal direction of the semiconductor material. The method continues by forming recesses about the gate structure and forming a stress-inducing semiconductor material in the recesses.
Abstract:
A method of fabricating a semiconductor device with back side conductive plugs is provided here. The method begins by forming a gate structure overlying a semiconductor-on-insulator (SOI) substrate. The SOI substrate has a support layer, an insulating layer overlying the support layer, an active semiconductor region overlying the insulating layer, and an isolation region outboard of the active semiconductor region. A first section of the gate structure is formed overlying the isolation region and a second section of the gate structure is formed overlying the active semiconductor region. The method continues by forming source/drain regions in the active semiconductor region, and thereafter removing the support layer from the SOI substrate. Next, the method forms conductive plugs for the gate structure and the source/drain regions, where each of the conductive plugs passes through the insulating layer.
Abstract:
The present invention relates to a method and apparatus capable of generating frequency-modulation halftone dots in high speed and belongs to the field of the digital image halftone. In the prior art, read-write operation is usually carried out many times in error rows during processing each pixel so that halftone dots are generated in low speed. In the method according to the present invention, the error generated by the current pixel is buffered in a register file and the final accumulated error values are written in the error rows only after all of the relative pixels are processed. Thus, read-write operation is carried out only once in the error rows for processing each pixel. The present invention also provides an apparatus to implement the method. The apparatus comprises an error row memory, an error buffer register file, a gray generation circuit, a threshold comparison circuit, an error generation circuit, an error buffer register file control circuit, and an error row control circuit. The method and apparatus according to the present invention decrease the steps in operation and improve the speed for generating the frequency-modulation halftone dots.
Abstract:
Methods form an integrated circuit structure by forming at least a portion of a plurality of devices within and/or on a substrate and patterning trenches in an inter-layer dielectric layer on the substrate adjacent the devices. The patterning forms relatively narrow trenches and relatively wide trenches. The methods then perform an angled implant of a compensating material into the trenches. The angle of the angled implant implants a greater concentration of the compensating material in the regions of the substrate at the bottom of the wider trenches relative to an amount of compensating material implanted in the regions of the substrate at the bottom of the narrower trenches. The methods then deposit a metallic material within the trenches and heat the metallic material to form silicide from the metallic material.
Abstract:
An exemplary display system (2) includes a display device (23), an image sensor (20), and a microprocessor unit (21). The image sensor includes an image sensor unit (24) and a digital signal processor unit (22) integrated therein. The image sensor unit is configured for generating a current. The digital signal processor includes a size regulator (221) configured for receiving the current, generating an analog image signal according to the current, and providing the analog image signal to the display device. The microprocessor unit is configured for initializing the image sensor unit.