Abstract:
A combined altitude display apparatus for generating a combined altitude value is provided. The apparatus comprises a first altitude input interface, wherein the first altitude input interface receives a first altitude value; a second altitude input interface, wherein the second altitude input interface receives a second altitude value, wherein the second altitude value indicated by the second altitude input interface has a cyclical range; an altitude output interface, wherein the altitude output interface outputs a third altitude value; and a data fusion component coupled to the first altitude input interface and the second altitude input interface and configured to calculate the third altitude value based on the first altitude value and the second altitude value.
Abstract:
A network. At least some embodiments are a network including a first root node connected to a first port of a first switch and a second root node connected to a first port of a second switch. A first link is connected to a second port of the first switch and connected to a second port of the second switch. A second link is connected to a third port of a first switch and connected to a third port of the second switch.
Abstract:
Infrared vision systems, headpieces, and methods include an eyepiece and a body module. The eyepiece is configured to be worn over a user's eyes. The eyepiece includes an infrared sensor, configured to detect external infrared information. For example, the infrared sensor may include a plurality of short-wave infrared (SWIR) sensors. The eyepiece includes a display, configured to visually provide external infrared information to the user. For example, the display may include a see-through color display. The body module is in wired or wireless communication with the eyepiece. The eyepiece may include an adjustable strap, coupled to the eyepiece. The adjustable strap is configured to wrap around the user's head.
Abstract:
An apparatus for target location is disclosed. The apparatus includes a housing, which includes a range sensor to generate range data, an image sensor to generate image data, an inertial sensor to generate inertia data, and a processor. The processor is configured to receive the image data from the image sensor and determine a first orientation of the housing and receive the inertia data from the inertial sensor and modify the first orientation based on the inertia data to produce a modified orientation of the housing.
Abstract:
At least some embodiments are a method including connecting a mobile computer system to a vehicle computer system, wherein the vehicle computer system does not include a display device. Mission control data is received from the vehicle computer system, the mission control data generated by one or more vehicle I/O sensors coupled to the vehicle computer system. The mission control data is displayed on a display device of the mobile computer system.
Abstract:
An apparatus. The apparatus includes electrical circuitry for selectably controlling a first and a second weapon system different from the first weapon system. The electrical circuitry includes a first switch including a first pole and a second pole. The apparatus also includes a first connector having a first terminal coupled to a common terminal of the first pole. A second connector has a first terminal coupled to a common terminal of the second pole. The first connector is configured to couple to a first weapon system mounted on a mobile platform; and the second connector is configured to couple to a second weapon system mounted on the mobile platform. The first weapons system is configured to operate when the first switch is in a first position and the second weapon system is configured to operate when the first switch is in a second position.
Abstract:
A network. At least some embodiments are a network including a first root node connected to a first port of a first switch and a second root node connected to a first port of a second switch. A first link is connected to a second port of the first switch and connected to a second port of the second switch. A second link is connected to a third port of a first switch and connected to a third port of the second switch.
Abstract:
A system includes a threat warning system and a countermeasure system. The threat warning system generates threat data that includes at least a threat coordinate value. The countermeasure system includes a wide-angle laser beam director and the infrared counter measure system that is configured to receive the threat data including the threat coordinate value from the threat warning system and causes the beam director to direct a divergent laser beam based on the threat coordinate value and cause the beam director to vary an angle of the cone based on an aircraft signature perceived by a threat.
Abstract:
A system. The system includes a BIOS system comprising a first memory device configured to store data associated with a computer system, wherein the first memory device is a non-volatile random-access memory device. The system further includes a second non-volatile memory device configured to store a set of instructions for execution by a processor during initialization of the computer system. The set of instructions comprises at least one instruction configured to read a data value stored in the first memory device.
Abstract:
A system includes a threat warning system and an countermeasure system. The threat warning system generates threat data that includes at least a threat coordinate value. The countermeasure system includes a wide-angle laser beam director and the infrared counter measure system receives the threat data including the threat coordinate value from the threat warning system and causes the beam director to direct a divergent laser beam based on the threat coordinate value.