Abstract:
A silyl protected diacrylamide compound is described. A method of forming such a compound includes mixing a silylation reagent with a hydroxylated diamine compound under first reactive conditions to form a product in a first solution, separating the product from the first solution, and mixing the product with acryloyl chloride under second reactive conditions in a second solution to form a silyl protected diacrylamide compound.
Abstract:
A process for the preparation of monodisperse polymer particles which are formed by contacting monomers with aqueous dispersions comprising monodisperse swellable seed polymers/oligomers, and initiating polymerization in the presence of a steric stabilizer. The resulting swollen seed particles are characterized by the particle mode diameter.
Abstract:
A bead processing assembly for use in attaching magnetic beads to biological cells and other biological materials and/or separating magnetic beads from biological cells and other biological materials includes a base assembly having a housing, a support panel disposed on the housing and having a front face, a first pinch valve at least partially outwardly projecting from the front face of the support panel, and a first pump at least partially outwardly projecting from the front face of the support panel. A rocker assembly is supported on the base assembly and includes a mount assembly supported on the base assembly, a platform assembly pivotably secured to the mount assembly, and a rocker drive for repeatedly rocking the platform assembly relative to the mount assembly.
Abstract:
This invention relates to a sample holder for isolating magnetically labelled particles from a non-magnetic medium in a plurality of samples. The holder comprises a magnetic base for applying a magnetic force to the magnetically labelled particles and a body which is mountable on the base and demountable therefrom. The body comprises an array of sample holding portions and a magnetisable member which is magnetically urged towards the magnetic base when the body is seated on the base, whereby the body is urged to remain seated on the base. The invention also relates to use of the sample holder to separate magnetic particles from a non-magnetic medium and methods of performing such a separation.
Abstract:
The disclosure generally relates to compositions and methods for the production of nucleic acid molecules. In some aspects, the invention allows for the microscale generation of nucleic acid molecules, optionally followed by assembly of these nucleic acid molecules into larger molecules. In some aspects, the invention allows for efficient production of nucleic acid molecules (e.g., large nucleic acid molecules such as genomes).
Abstract:
This invention relates to monodisperse magnetic hydrogel polymer particles comprising a magnetic material and a polymer formed from (a) a hydrophilic vinylic monomer having a log P oct/wat (log P) of less than about 0.5; and (b) a crosslinker comprising at least two vinyl groups. The invention also relates to monodisperse coated hydrogel polymer particles comprising a polymer formed from (a) a hydrophilic vinylic monomer having a log P oct/wat (log P) of less than about 0.5; and (b) a crosslinker comprising at least two vinyl groups; and a coating. Also provided are methods of forming the monodisperse magnetic hydrogel polymer particles and monodisperse coated polymer particles.
Abstract:
A method of separating RNA from a sample, comprising providing: a sample comprising RNA, a binding solution comprising an oligoethylene glycol and a salt, and a solid support having a hydrophilic surface. The method further comprises contacting the sample with the binding solution and solid support, under conditions that allow binding of the RNA in the sample to the surface of the solid support, thereby providing a solid support with bound RNA in contact with residual solution; and separating the solid support with bound RNA from the residual solution. During the binding of the RNA to the surface of the solid support, oligoethylene glycol is present at a concentration of at least about 35% v/v and the salt is present at a concentration of between about 1 M and about 2 M. Methods for producing purified RNA are also provided, comprising in vitro transcription to produce an RNA molecule with a first magnetic bead and purification with a second magnetic bead. Also provided are kits and uses.
Abstract:
This invention relates to methods and compositions for coupling nucleic acid to a functionalized surface or support. In particular, the present invention provides an improved process for coupling aminated nucleic acid to a support functionalized with carboxylic acid groups, wherein the coupling reaction is conducted in the presence of an organic solvent. The invention further relates to compositions and kits for performing the coupling reaction and uses of nucleic acid-loaded supports for various applications.
Abstract:
This invention relates to monodisperse magnetic hydrogel polymer particles comprising a magnetic material and a polymer formed from (a) a hydrophilic vinylic monomer having a log P oct/wat (log P) of less than about 0.5; and (b) a crosslinker comprising at least two vinyl groups. The invention also relates to monodisperse coated hydrogel polymer particles comprising a polymer formed from (a) a hydrophilic vinylic monomer having a log P oct/wat (log P) of less than about 0.5; and (b) a crosslinker comprising at least two vinyl groups; and a coating. Also provided are methods of forming the monodisperse magnetic hydrogel polymer particles and monodisperse coated polymer particles.
Abstract:
The disclosure generally relates to compositions and methods for the extraction of nucleic acids from biological samples. In particular embodiments the extraction involves the use of an organic solvent with sufficient density so that centrifugation of the sample is not needed to achieve phase separation.