Abstract:
A password registration unit encrypts key information using an input password, and stores the generated encrypted key as a file into a computer. A file encryption unit generates a file key arbitrarily, encrypts the file key using the key information, encrypts a plaintext using the file key to generate a ciphertext, and stores an encrypted file including the encrypted file key in its header part and the ciphertext in its data part. A file decryption unit decrypts the encrypted file key using the key information to obtain a file key, or receives an input of a password, decrypts the encrypted key using the password to obtain key information, and decrypts the encrypted file key using the key information to obtain a file key. The file decryption unit then decrypts the ciphertext using the obtained file key.
Abstract:
A SAW element (13) is formed of a piezoelectric substrate (14), on which are provided IDT electrodes (15), connection electrodes (16), underlying metal layers (17), and acoustic materials (18) placed on the underlying metal layers (17) and having surfaces parallel to the main surface of the piezoelectric substrate (14). The SAW element is mounted in a package (10), which is provided with external terminals (11) connected with the connection electrodes (16), and the package is hermetically scaled with a lid (20) to form a SAW device. When such a SAW element (13) is mounted faceup in a package (10) using a vacuum chuck (30), its piezoelectric substrate (14) can be protected against damage. When a SAW element (13) provided with bumps (23) on its connection electrodes (16) is mounted facedown in a package (10), the failure of electrical connections can be prevented.
Abstract:
On the surface of an insulating substrate 1 on which a transistor is formed, a first interlayer insulation film 8 is provided, and a first contact hole 9 and a metal interconnection layer 10 are formed. A second interlayer insulation film 11 is formed covering the above items, and a second contact hole 12 and a barrier metal 13 are formed. After a first hole 14 for bonding pad is formed, a third interlayer insulation film 15 is provided, and then a third contact hole 16 and a second hole 17 for bonding pad are formed. A transparent electro-conductive film 18 is formed covering the holes 14, 16 and 17, After that, a portion of the transparent electro-conductive film 18 locating above the holes 14, 17 for bonding pad is removed to have the metal interconnection layer 10 exposed. The exposed metal interconnection layer 10 is used as bonding pad 20. This contributes to reliable bonding of bonding wires onto the bonding pad.
Abstract:
A cathode ray tube includes a panel and a reinforcing band for implosion-protection that is located around a side wall of the panel. The reinforcing band is formed by folding over one side in a width direction of a belt-like metal plate (6) so as to have a partially twofold structure and by joining both end portions of the belt-like metal plate (6) so as to be in the shape of a closed loop extending along the side wall of the panel. One end portion and the other end portion of the both end portions are joined together so as to achieve a threefold structure in at least one part. This can achieve a strong reinforcing band at a low cost without using a special member.
Abstract:
A composite light-emitting device according to the present invention includes a light-emitting element including a transparent substrate and a multilayer structure formed on the substrate. The multilayer structure includes first and second semiconductor layers of first and second conductivity types, respectively. The device further includes a submount member for mounting the light-emitting element thereon. The principal surface of the submount member faces the multilayer structure. The submount member is electrically connected to the light-emitting element. The light-emitting element is covered with a wavelength-shifting resin member. The resin member is provided on the principal surface of the submount member and contains a photofluorescent or filtering compound. The photofluorescent compound shifts the wavelength of radiation that has been emitted from the light-emitting element, while the filtering compound partially absorbs the radiation.
Abstract:
In a phosphor lamp manufacturing method, a phosphor suspension that is not prone to deterioration is prepared, and applied to an inner surface of a glass bulb. Then, the phosphor suspension is dried and baked to form a phosphor film. In addition to a phosphor, metal oxide used as a bonding agent, pure water used as a dispersant and ammonia used as a pH regulator are mixed into the phosphor suspension, and pH is regulated in a range of no less than pH8 and no more than pH10. Aluminum oxide particles with a specific surface area of no less than 1.5 m 2 /g and no more than 30 m 2 /g are used as the metal oxide. This makes the phosphor suspension less prone to deterioration and enables a high film strength of 1.5 gf/cm 2 or more to be obtained even if the phosphor film is formed using a phosphor suspension that has been left for a long period after mixing.
Abstract:
The object of the present invention is to measure a concentration of protein stably at a temperature not higher than 25°C, which is a possible ambient temperature at home, and further to expand the measurable concentration range while preventing an obstruction due to a suspending particle such as a bubble and the like, using a reagent prepared by mixing an acid in a solution containing tannin, tannic acid and m-galloyl gallic acid. By mixing the reagent in a solution to be detected to opacify the solution, intensities of at least a transmitted light or a scattered light of the solution to be detected is measured, and a protein concentration thereof is determined based on the intensity. The present invention also provides a method for measuring a concentration of a solution and a method of urinalysis, wherein a protein concentration is measured after measuring an angle of rotation.