Abstract:
A seedling-cutting apparatus includes a pair of arms that is to nip a portion of a stem of a seedling for grafting and that can be opened and closed and a blade that is provided so as to be capable of reciprocating relative to the portion of the stem. At least one of the pair of arms includes a through hole or a cutout that penetrates a portion of the arms along a direction in which the blade reciprocates. At least a portion of the through hole or the cutout faces the portion of the stem and at least a portion of the blade moves through the through hole or the cutout.
Abstract:
Provided is an oxidation reactor capable of oxidizing hydrocarbons with both reaction efficiency and energy efficiency. The oxidation reactor according to the present invention includes a liquid inlet channel, a gas inlet channel, a gas-liquid mixing unit, and a flow reactor. Through the liquid inlet channel, a liquid containing a reaction substrate hydrocarbon is introduced. Through the gas inlet channel, a gas containing oxygen and ozone is introduced. The gas-liquid mixing unit mixes the liquid introduced from the liquid inlet channel with the gas introduced from the gas inlet channel. In the flow reactor, an oxidation catalyst is immobilized or packed. The gas-liquid mixing unit houses, in its channel, a mobile particle which is capable of rotating and/or moving to mix the liquid with the gas to thereby form a gas-liquid slug flow. The gas-liquid slug flow is introduced into the flow reactor.
Abstract:
An optical fiber for amplification includes a core having an inner core and an outer core surrounding the outer circumferential surface of the inner core. The relative refractive index difference of the inner core to a cladding is smaller than the relative refractive index difference of the outer core to the cladding. The outer core is entirely doped with erbium. The theoretical cutoff wavelength of an LP11 mode light beam is a wavelength of 1,565 nm or more. The theoretical cutoff wavelength of an LP21 mode light beam is a wavelength of 1,530 nm or less. The theoretical cutoff wavelength of the LP02 mode light beam is a wavelength of 980 nm or less.
Abstract:
An amplification optical fiber operable to propagate light beams in a plurality of modes in a predetermined wavelength range through a core doped with a rare earth element, wherein Expression (1) is satisfied, where a cutoff wavelength of a propagated highest mode light beam is defined as λmax, under conditions in which the cutoff wavelength of the highest mode light beam is defined as λc, a shortest wavelength of the wavelength range is defined as λmin, and a cutoff wavelength of a second-highest mode light beam to the highest mode light beam is λmin. λc>0.5 λmin+0.5 λmax (1).
Abstract:
An amplification optical fiber operable to propagate light beams in a plurality of modes in a predetermined wavelength range through a core doped with a rare earth element, wherein Expression (1) is satisfied, where a cutoff wavelength of a propagated highest mode light beam is defined as λmax, under conditions in which the cutoff wavelength of the highest mode light beam is defined as λc, a shortest wavelength of the wavelength range is defined as λmin, and a cutoff wavelength of a second-highest mode light beam to the highest mode light beam is λmin. λc>0.5 λmin+0.5 λmax (1)
Abstract:
A polymer membrane for cancer cell detection having a surface provided with a mold having a three-dimensional structure complementary to a portion of a steric structure of a cancer cell to be detected; a method of producing the same; and a cancer cell detection device including the polymer membrane are provided. The polymer membrane for cancer cell detection can be obtained, for example, by a producing method including: polymerizing monomers in presence of cancer cells to be detected, to form a cancer cell-containing polymer membrane having the cancer cells incorporated therein; and removing at least part of the cancer cells incorporated in the cancer cell-containing polymer membrane.
Abstract:
18F-labeled 4-boronophenylalanine (BPA) can be produced by preparing and further processing a precursor of 18F-labeled BPA represented by the following formula: in which R1 represents a bromo group, an iodo group, a fluoro group, a diazaborinane derivative, BX3− or BX3−M+ (wherein X represents a halogen atom; and M+ represents a monovalent monoatomic cation, a polyatomic cation or a complex cation).
Abstract:
[Problem] To provide a means of using a yeast to recover noble metal ions in reduced form, i.e., as noble metals.[Solution] In a liquid to which an electron donor has preferably been added, Saccharomyces cerevisiae, Zygosaccharomyces rouxii, Schizosaccharomyces pombe or a yeast of the Debaryomyces genus deposited as NITE-BP01780 is brought into contact with metal ions of a noble metal such as gold, palladium and platinum, and the noble metals, being the reduced form of the noble metal ions, are recovered from the recovered yeast.
Abstract:
An additive containing an ion as a luminescence center is added to alkali halide powder as a base material. Mechanical energy for applying an impact force, a shearing force, a shear stress, or a friction force is applied so as to grind or mix the alkali halide powder and the additive. The ion as the luminescence center is doped into the alkali halide as the base material so as to obtain alkali halide-based scintillator powder. With this process, the alkali halide-based scintillator powder can be manufactured at a room temperature in the atmospheric air without any complicated condition control or any process at a high temperature under high vacuum and a large-sized scintillator sheet can be produced.
Abstract:
An optical fiber for amplification includes a core having an inner core and an outer core surrounding the outer circumferential surface of the inner core. The relative refractive index difference of the inner core to a cladding is smaller than the relative refractive index difference of the outer core to the cladding. The outer core is entirely doped with erbium. The theoretical cutoff wavelength of an LP11 mode light beam is a wavelength of 1,565 nm or more. The theoretical cutoff wavelength of an LP21 mode light beam is a wavelength of 1,530 nm or less. The theoretical cutoff wavelength of the LP02 mode light beam is a wavelength of 980 nm or less.