Abstract:
[0065] The invention relates to a coated articlehaving enhanced reversible thermal properties. The coated article comprises a substrate having a surface and a coating covering a portion of the surface and comprising a polymeric material and a temperature regulating material dispersed in the polymeric material. The coating is formed with a plurality of regions of discontinuity that are separated from one another and expose a remaining portion of the surface to provide improved flexibility, softness, air permeability, or water vapor transport properties. The coated article may be used in apparel, footwear, medical products, containers and packagings, building materials, appliances, and other products.
Abstract:
In accordance with one aspect a temperature regulating article comprises a substrate and a polymeric phase change material bound to the substrate, wherein the polymeric phase change material is characterized by including a precisely branched polymer with substantially equally spaced repeating sidechains. In other embodiments the polymeric phase change material includes between 20 and 200 branches per 1000 carbon units, has a latent heat of at least 5 Joules per gram, and a transition temperature between 0°C and 40°C.
Abstract:
In accordance with one aspect, a thermally regulating construction material comprises a base material and a polymeric phase change material bound to the base material, wherein the base material provides reversible temperature regulation properties to the building construction material. In accordance with another aspect, an insulation material for use in building construction comprises a base material and a polymeric phase change material bound to the base material, wherein the base material provides reversible temperature regulation properties to the insulation material. The base material may be selected from the group consisting of foam insulation, loose fill insulation, and batted insulation.
Abstract:
A fabric, fiber or article comprising a plurality of fiber bodies, the plurality of fiber bodies including a first fiber material and a second fiber material, wherein the first fiber material comprises a cellulosic material and a phase change material dispersed in the cellulosic material, the phase change material forming a plurality of domains dispersed in the cellulosic material, the phase change material having a latent heat of at least 5 Joules per gram and a transition temperature in the range of 0°C to 100°C, the phase change material providing thermal regulation based on at least one of absorption and release of the latent heat at the transition temperature. Wherein the second fiber material comprises a fire resistant material.
Abstract:
An article comprises a substrate, a first functional polymeric phase change material, and a plurality of containment structures that contain the first functional polymeric phase change material. The article may further comprise a second phase change material chemically bound to at least one of the plurality of containment structures or the substrate. In certain embodiments, the article further comprises a second phase change material and a binder that contains at least one of the first polymeric phase change material and the second phase change material. The containment structure may be a microcapsule or a particulate confinement material.
Abstract:
A coated article for providing a phased response to rapid temperature changes, comprises a substrate and a coating disposed on a portion of the substrate. The coating comprises a polymeric material, a first temperature regulating material having a transition temperature between 22° C and 50° C and disposed within a first plurality of microcapsules, and a second temperature regulating material having a transition temperature between 25° C and 45° C and disposed within a second plurality of microcapsules. The first temperature regulating material and the second temperature regulating material are dispersed in the polymeric material. The coating includes a plurality of regions of discontinuity formed by the coating that create exposed portions of the substrate to provide improved flexibility and air permeability to the coated article and wherein the coating provides a buffered response to rapid temperature changes.
Abstract:
A stable suspension used for the production of temperature regulating fabrics. The suspension preferably comprises microcapsules comprising at least one phase-change material. A method for manufacturing the stable suspension that includes providing microcapsules containing a phase-change material, providing a solvent capable of dissolving a fabric-forming component selected from the group consisting of at least one of said polymer and precursors thereof, and mixing said solvent and said microcapsules to form said first suspension.
Abstract:
A coated article includes a substrate and a coating covering at least a portion of the substrate. The coating includes a binder having a glass transition temperature in the range of -110°C to -40°C. The coating also includes a set of microcapsules having sizes in the range of 1 micron to 15 microns, and at least one of the set of microcapsules is chemically bonded to either of, or both, the substrate and the binder.
Abstract:
A beverage container includes a beverage bottle and a label adjacent to the beverage bottle and including a set of microcapsules that contain a phase change material. The phase change material has a latent heat of at least 40 J/g and a transition temperature in the range of 0°C to 40°C. The phase change material provides thermal regulation based on at least one of absorption and release of the latent heat at the transition temperature.
Abstract:
A thermal barrier comprises a first barrier layer, a second barrier layer, and a base material positioned between the first barrier layer and the second barrier layer. The base material comprises a plurality of regions and a barrier zone separating the regions. The thermal barrier further comprises a non-encapsulated phase change material impregnating one or more of the regions. The barrier zone hinders migration of the phase change material in its liquid state within the base material, and the first barrier layer is bonded to the second barrier layer to enclose the base material. The thermal barrier may be used or incorporated in various products or applications where thermal management is desired. For example, the thermal barrier may be used in textiles, apparel, footwear, medical products, containers and packaging, buildings, appliances, and other products.