Abstract:
Disclosed is a method and plant for the catalytic dehydrogenation of alkanes, such as propane. The plant is a plant of hybrid architecture wherein one or more membrane-assisted reactor configurations according to open architecture are combined with one or more membrane-containing reactors of closed architecture. Hydrogen remaining in the reaction mixture after separation in the membrane separation unit of a first open architecture configuration, is fed to a first membrane-reactor of the closed architecture type. Also disclosed are methods of modifying plants so as to create the hybrid architecture plant.
Abstract:
The present invention presents a stripping process for urea production with a total recycle. An important characteristic of the described urea process is a substantially complete CO 2 conversion, which eliminates the need for carbamate recycle from the recovery section to the synthesis section. This increases the overall conversion and reduces operation costs.
Abstract:
Disclosed is a method for the removal of urea dust from the off-gas of a finishing section of a urea production plant. the method comprises subjecting the off-gas to quenching with water so as to produce quenched off-gas. The quenched off-gas is subjected to humidification by mixing said quenched gas stream with a humidification fluid selected from (a) saturated steam and (b) superheated steam mixed with a second aqueous stream, so as to produce a humidified gas stream, subjecting said humidified gas stream to particle separation (i.e., dust removal) by means of a scrubbing liquid in which at least part of the particles in the gas stream are soluble.
Abstract:
The invention provides a method and a plant for producing urea ammonium nitrate (UAN). The method involves the use of a condensation section, optionally in combination with a medium pressure decomposition section, between the dissociation and neutralization sections. The invention further provides a method of modifying an existing UAN plant. The advantages of the process of the invention are that the emission of CO 2 can be reduced, the plant capacity can be increased and the high capital expenditure needed for CO 2 compression equipment is reduced.
Abstract:
Disclosed is a thermal energy storage system for storing collected solar thermal energy. The system comprises a solar thermal energy collection facility in the form of a field of parabolic troughs, which is in thermal communication with a molten salt circuit. The molten salt circuit is in fluid communication with a molten salt storage facility comprising at least three storage tanks that are each in fluid communication with the molten salt circuit. The multiple tanks set-up allows using cheaper materials, and a more efficient storage of thermal energy.
Abstract:
The present application relates to a method of manufacturing a tube sheet (7) and heat exchanger assembly for a pool reactor or pool condenser for use in the production of urea from ammonia and carbon dioxide, wherein the method comprises manufacturing of the tube sheet (7) from a carbon steel material grade and providing said tube sheet (7) with corrosion protective layers (8, 9) of an austenitic- ferritic duplex stainless steel grade, wherein the heat exchanger comprises at least one U-shaped tube (13) of an austenitic-ferritic duplex stainless steel grade, the method further comprises inserting at least two sleeves (11) of an austenitic-ferritic duplex stainless steel grade through the tube sheet (7) such that both ends of the sleeve (11) extend in a direction away from the tube sheet (7), the method further comprises connecting the sleeves (11), at least the opposing ends thereof, to at least the protective layers (8,9) of the tube sheet (7) and finally, connecting both ends of the at least one U-shaped tube (13) to the respective sleeves (11).
Abstract:
Disclosed is a storage tank for molten salts, preferably of the thermocline type. The tank is provided with an insulation on the inside, which is provided by molten salts captured and retained in an appropriate metal structure. The metal structure has openings allowing molten salts to flow into it, and may consist of metal supports that hold elements which allow retaining molten salts, such as a structured packing, metal boxes, or gutter wall.
Abstract:
Disclosed is a urea plant comprising an additional reactor. With reference to the regular components of a urea plant, including a recovery section and a high pressure carbamate condenser, the additional reactor is positioned between the recovery section and the high pressure carbamate condenser. The invention also relates to a process for the synthesis of urea, comprising an additional reaction step converting, at an earlier stage than conventional, recovered carbamate into urea.
Abstract:
Disclosed is a catalyst suitable for the catalytic oxidative cracking of a H 2 S-containing gas stream, particularly in the event that the stream also contains methane and/or ammonia. The catalyst comprises iron and molybdenum supported by a carrier comprising aluminium. The carrier preferably is alumina. The iron and molybdenum preferably are in the form of sulphides. Also disclosed is a method for the production of hydrogen from a H 2 S-containing gas stream, comprising subjecting the gas stream to catalytic oxidative cracking so as to form H 2 and S 2 , using a catalyst in accordance with any one of the preceding claims.
Abstract:
Disclosed is a method for the production of hydrogen from a H 2 S-containing gas stream also containing ammonia, comprising subjecting both gas stream to catalytic oxidative cracking of both the H 2 S and the NH 3 , so as to form H 2 , S 2 and N 2 . In this method, preferably, an additional amount of oxygen is added as compared to the amount used for H2S catalytic oxidative cracking. Also, preferably, the contact time of the gas stream with the catalyst is increased. The catalyst preferably is provided as a single bed, and then preferably comprises iron and molybdenum supported by a carrier comprising aluminum. The preferred carrier is alumina. The iron and molybdenum preferably are in the form of sulfides.