Abstract:
The present invention relates to the fields of medicine and immunology. In particular, it relates to novel antisense oligonucleotides that may be used in the treatment, prevention and/or delay of Leber congenital amaurosis.
Abstract:
Described herein are method, compositions and kits for prognosis of prostate cancer. The methods include determining the ratio of PCA3 and of a prostate-specific marker expression in a urine sample and correlating the value of the PCA3/prostate-specific marker ratio with the aggressiveness and mortality risk of prostate cancer in the subject. The method for prognosing prostate cancer in a sample of a patient includes assessing the amount of a prostate cancer specific PCA3 mRNA and the amount of prostate-specific marker in the sample; determining a ratio value of this amount of prostate cancer specific PCA3 mRNA over the amount of prostate-specific marker; comparing the ratio value to at least one predetermined cut-off value, wherein a ratio value above the predetermined cut-off value is indicative of a higher risk of mortality of prostate cancer as compared to a ratio value below the predetermined cut-off value.
Abstract:
Described herein are method, compositions and kits for prognosis of prostate cancer. The methods include determining the ratio of PCA3 and of a prostate-specific marker expression in a urine sample and correlating the value of the PCA3/prostate-specific marker ratio with the aggressiveness and mortality risk of prostate cancer in the subject. The method for prognosing prostate cancer in a sample of a patient includes assessing the amount of a prostate cancer specific PCA3 mRNA and the amount of prostate-specific marker in the sample; determining a ratio value of this amount of prostate cancer specific PCA3 mRNA over the amount of prostate-specific marker; comparing the ratio value to at least one predetermined cut-off value, wherein a ratio value above the predetermined cut-off value is indicative of a higher risk of mortality of prostate cancer as compared to a ratio value below the predetermined cut-off value.
Abstract:
A rapid cycle dynamic nuclear polarization (DNP) NMR apparatus comprises (i) a cooling unit configured to cool a sample in a capillary, (b) a DNP polarization unit configured to polarize the sample in the capillary, (c) a stripline-based NMR detector comprising a stripline for NMR analysis of the sample in the capillary, (d) a transport unit configured to guide the capillary from the DNP polarization unit to the stripline of stripline-based NMR detector; and (e) a heating unit configured to heat the sample in the capillary before analysis of the sample by the stripline-based NMR detector. Fast (1D-3D) NMR measurements with high resolution may be obtained.
Abstract:
Projection system for image projection of anatomical features on a subject. Intraoperative position markers (10) are disposed on a first body surface (6), and a moveable first detector (12) with a detection line of sight is provided. A control unit (14) is arranged for registering detected intraoperative position markers (10) with a plurality of preoperative position markers (4) in preoperative images. A movable projector (16) is provided for projecting an image representation (18) of the one or more anatomical features of interest. The projection line of sight is substantially parallel to the detection line of sight. The control unit (14) is in communication with the first detector (12) and projector (16) and arranged for real-time image projection of the image representation (18) on the second body surface (20) by the projector (16) independent from synchronized movement and varying detection/projection angles of the first detector (12) and the projector (16).
Abstract:
A compound having the structure according to formula III wherein: X is NH or S; R1 is H or (1C-4C)alkyl; R2 is (1C-4C)alkyl, phenyl or a monocyclic aromatic ring having one or more N-, O- or S-atoms in the ring, which alkyl, phenyl or aromatic ring is optionally substituted with one or more groups selected from (1C-4C)alkyl, (1C-4C)alkyloxy, halo(1C-4C)alkyl, halo(1C-4C)alkyloxy, phenyloxy, phenylthio, halogen, or nitro; R3 and R4 are each independently H, (1C-6C)alkyl, (2C-6C) alkenyl, (2C-6C)alkynyl, cyano, (3C-6C)cycloalkyl, phenyl, a monocyclic aromatic ring having one or more N-, O- or S-atoms in the ring, a monocyclic non-aromatic ring having one or more N-, O- or S-atoms in the ring, each optionally substituted with hydroxyl, (1C-4C)alkoxy, phenyl, cycloalkyl, piperidyl, piperazinyl, furyl, thienyl, pirazinyl, pyrrolyl, 2H-pyrrolyl, pyrazolyl, isoxazolyl, isothiazolyl, pyrrolidonyl, pyrrolinyl, imidazolinyl, imidazolyl, a monocyclic aromatic ring having one or more N-, O- or S-atoms in the ring, whereby each of these optional substituents is optionally further substituted with (1C-4C)alkyl, (1C-4C)alkyloxy, halo(1C-4C)alkyl, halo(1C-4C)alkyloxy, halogen, nitro or (1C-2C)dioxol forming a ring; or R3 and R4 form together pyrrolyl, imidazolyl, pyrazolyl, pyrrolidinyl, pyrrolinylimidazolidinyl, imidazolinyl, piperidyl, piperazinylmorpholinyl, each optionally substituted with (1C-6C)alkyl, phenyl(1C-4C)alkyl, phenylketo(1C-4C)alkyl; R5 is H, Cl, F, Br, Me, NO2, t-butyl, OCF3, OCH3, CF3; R6 is H, (1C-4C)alkyl, (1C-4C)alkyloxy, halo(1C-4C)alkyl, halo(1C-4C)alkyloxy, nitro or halogen; R7 is H, F, Cl, Br, Me, NO2, t-butyl, OCF3, OCH3, CF3; or pharmaceutically acceptable addition salts thereof for use in treatments of carcinoma, in particular, to delay, prevent or reverse metastasis in prostate cancer.
Abstract:
The invention relates to a computer implemented method of analysing data comprising measured values of characteristics of objects in samples, the data comprising —a first set of data (Xireference) with measured values of characteristics of objects in reference samples; —a test set of data (Xitest) with measured values of the characteristics of objects in a test sample; characterised by the method comprising; —fitting a control model to the first set of data to determine control loadings (Pcontrol) each representing an independent correlation between characteristics; —projecting the first set of data (Xireference) onto the control loadings (Pcontrol) for determining a first set control scores (Tcontrol,ireference) and determining one or more confidence intervals for the first set of control scores (Tcontrol,ireference); —projecting the test data onto the control loadings (Pcontrol) for determining test control scores; —determining if the test control scores are within one or more the confidence intervals.
Abstract:
Described herein are method, compositions and kits for prognosis of prostate cancer. The methods include determining the ratio of PCA3 and of a prostate-specific marker expression in a urine sample and correlating the value of the PCA3/prostate-specific marker ratio with the aggressiveness and mortality risk of prostate cancer in the subject. The method for prognosing prostate cancer in a sample of a patient includes assessing the amount of a prostate cancer specific PCA3 mRNA and the amount of prostate-specific marker in the sample; determining a ratio value of this amount of prostate cancer specific PCA3 mRNA over the amount of prostate-specific marker; comparing the ratio value to at least one predetermined cut-off value, wherein a ratio value above the predetermined cut-off value is indicative of a higher risk of mortality of prostate cancer as compared to a ratio value below the predetermined cut-off value.
Abstract:
A compound having the structure according to formula III wherein: X is NH or S; R1 is H or (1C-4C)alkyl; R2 is (1C-4C)alkyl, phenyl or a monocyclic aromatic ring having one or more N—, O— or S— atoms in the ring, which alkyl, phenyl or aromatic ring is optionally substituted with one or more groups selected from (1C-4C)alkyl, (1C-4C)alkyloxy, halo(1C-4C)alkyl, halo(1C-4C)alkyloxy, phenyloxy, phenylthio, halogen, or nitro; R3 and R4 are each independently H, (1C-6C)alkyl, (2C-6C) alkenyl, (2C-6C)alkynyl, cyano, (3C-6C)cycloalkyl, phenyl, a monocyclic aromatic ring having one or more N—, O— or S— atoms in the ring, a monocyclic non-aromatic ring having one or more N—, O— or S— atoms in the ring, each optionally substituted with hydroxyl, (1C-4C)alkoxy, phenyl, cycloalkyl, piperidyl, piperazinyl, furyl, thienyl, pirazinyl, pyrrolyl, 2H-pyrrolyl, pyrazolyl, isoxazolyl, isothiazolyl, pyrrolidonyl, pyrrolinyl, imidazolinyl, imidazolyl, a monocyclic aromatic ring having one or more N—, O— or S— atoms in the ring, whereby each of these optional substituents is optionally further substituted with (1C-4C)alkyl, (1C-4C)alkyloxy, halo(1C-4C)alkyl, halo(1C-4C)alkyloxy, halogen, nitro or (1C-2C)dioxol forming a ring; or R3 and R4 form together pyrrolyl, imidazolyl, pyrazolyl, pyrrolidinyl, pyrrolinylimidazolidinyl, imidazolinyl, piperidyl, piperazinylmorpholinyl, each optionally substituted with (1C-6C)alkyl, phenyl(1C-4C)alkyl, phenylketo(1C-4C)alkyl; R5 is H, Cl, F, Br, Me, NO2, t-butyl, OCF3, OCH3, CF3; R6 is H, (1C-4C)alkyl, (1C-4C)alkyloxy, halo(1C-4C)alkyl, halo(1C-4C)alkyloxy, nitro or halogen; R7 is H, F, Cl, Br, Me, NO2, t-butyl, OCF3, OCH3, CF3; or pharmaceutically acceptable addition salts thereof for use in treatments of carcinoma, in particular to delay, prevent or reverse metastasis in prostate cancer.
Abstract:
The present invention relates to a method for assessing the efficacy of an inhibitor of a pro-inflammatory cytokine and/or of B cells in a subject and a method for treating said subject with said inhibitor provided the efficacy of said inhibitor has been determined as sufficient.