-
公开(公告)号:CN102288538A
公开(公告)日:2011-12-21
申请号:CN201110268190.1
申请日:2011-09-13
Applicant: 吉林大学
IPC: G01N17/00
Abstract: 本发明公开了一种射流式气/固冲蚀测试装置,是由空压机、压力表、压力控制阀、控制箱、除尘器、喷枪、喷嘴、样件转台、储砂室、变频电机、气体输送管、砂输送管和机体组成,空压机通过气体输送管与喷枪连通,气体输送管上设置有压力表和压力控制阀,喷枪下端具有喷嘴,样件转台位于喷嘴下方,样件转台由变频电机带动转动,储砂室通过砂输送管与喷枪连通,喷枪和样件转台位于封闭的机体内,储砂室位于机体内部的下方,空压机、压力表、压力控制阀、控制箱、除尘器和变频电机位于机体外部,除尘器用于机体内部的除尘;喷枪喷射角度为10°~90°;本发明使样件同时受到气/固两相流的冲蚀;本发明在工作过程中流场稳定,冲击角度能精确控制。
-
公开(公告)号:CN115901064B
公开(公告)日:2025-04-18
申请号:CN202211484245.7
申请日:2022-11-24
Applicant: 吉林大学
IPC: G01L5/161
Abstract: 本发明公开一种仿生柔性三维力传感器及其三维力检测方法,包括:传感器基底,传感器基底的底面设置为固定面,传感器基底的侧面设置为受力面,传感器基底的上表面设置有仿生沟槽结构,仿生沟槽结构为模拟蝎子缝感受器的呈现扇形分布的多沟槽结构;导电层,导电层为多个,分别设置在仿生沟槽结构及仿生沟槽结构周围一定范围内,每个导电层之间默认状态不接触;电极,包括第一电极和第二电极,第一电极和第二电极用于将仿生沟槽结构上的导电层连接为并联结构;三维力为三轴向力,可同时检测三个方向的力,包括X轴、Y轴、以及垂直力的Z轴。本发明提供的仿生柔性三维力传感器,在不依靠阵列应变片的前提下,使单一传感器可以检测三维力。
-
公开(公告)号:CN119123960A
公开(公告)日:2024-12-13
申请号:CN202411041993.7
申请日:2024-07-31
Applicant: 吉林大学 , 中国长江电力股份有限公司 , 辽宁材料实验室
IPC: G01B7/14
Abstract: 本发明公开了大型水轮机组吊装的仿生柔性触觉传感监测系统及方法,包括:多个仿生柔性触觉传感器在线监测传感器,所述多个仿生柔性触觉传感器在线监测传感器包括:气囊缓震模块、仿生触觉传感单元、中央处理模块、蓝牙传输模块、柔性电路板、辅助电路。其中仿生触觉传感单元的压力感知层受蝎子缝感受器启发设计仿生裂纹开槽,将封装层与气囊缓震模块连接。气囊缓震模块将外界的压力信号传递给仿生触觉传感单元,然后传递给中央处理模块,最后通过蓝牙传输模块将数据传递给上位机。此装置能够提升微小间隙检测的准确性,同时能够减少人力成本,实现在线监测的功能,既能够缩短吊装作业时间,又保证了工作人员的生命安全,提升了吊装工作的安全性。
-
公开(公告)号:CN118857516A
公开(公告)日:2024-10-29
申请号:CN202410863217.9
申请日:2024-06-29
IPC: G01L1/00 , B32B27/28 , B32B3/30 , B32B27/06 , B32B27/26 , B32B27/18 , B82Y15/00 , B82Y30/00 , B82Y40/00 , G01L9/00
Abstract: 本发明公开了一种兼具超灵敏与宽检测范围的仿生柔性压力传感器及其制备方法,涉及柔性传感器技术领域,其中,兼具超灵敏与宽检测范围的仿生柔性压力传感器自上而下包括:第一凸起层与第二凸起层,包括无规则的仿栉器凸起结构;第一弧面层与第二弧面层,包括仿栉器梯度弧面结构,即椭圆形弧面结构及半圆形弧面结构;相较于现有的柔性压力传感器,本发明所提供的兼具超灵敏与宽检测范围的仿生柔性压力传感器兼具超灵敏与宽检测范围,同时检测限低、响应/恢复时间快,满足工业机器人、医疗健康和可穿戴设备领域对兼具超灵敏与宽检测范围高性能压力传感器的需求。
-
公开(公告)号:CN118706251A
公开(公告)日:2024-09-27
申请号:CN202411069576.3
申请日:2024-08-06
IPC: G01H11/06
Abstract: 本发明公开了一种具有频率选择功能的粘弹性可调仿生柔性传感器及其制备方法,涉及柔性传感器技术领域,粘弹性可调仿生柔性传感器从上到下依次由高弹稳变层、振动传递层与频率识别层三部分组成,高弹稳变层置于柔性传感器的顶部和底部,与振动传递层和频率识别层接触面为通过旋涂等工艺制备的电极层,可在振动过程中提供稳定安全的受力界面并起到防尘、防干扰信号的保护作用。振动传递层包括高弹性微棘突导电薄膜与高弹性微拱形导电薄膜,二者呈微结构相对的方向连接,其中微棘突结构与微拱形结构切面中轴线重合,在受力过程中通过柔性微结构的界面调控起到放大振动效果并精准传递力的作用。频率识别层为可调谐粘弹性导电海绵,由聚酯海绵与导电混悬液制成,通过调整聚酯海绵的厚度与混悬液中导电粒子的配比与种类,改变导电海绵对多频振动的响应‑弛豫时间,实现振动频率的识别与按需调控。
-
公开(公告)号:CN118705990A
公开(公告)日:2024-09-27
申请号:CN202410979255.0
申请日:2024-07-22
IPC: G01B7/16
Abstract: 本发明提供一种长效稳健的仿生柔性应变裂纹传感器及其制备方法,该仿生柔性应变裂纹传感器包括:由上而下依次排列的柔性拉胀结构层、裂纹栅敏感层和纤维止裂层;其中所述裂纹栅敏感层具有多条激光加工制成的裂缝结构,所述柔性拉胀结构层由内凹六边形阵列组成,所述纤维止裂层中嵌有微米粒子生长的磁性纤维。上述仿生柔性应变裂纹传感器以拉胀层与纤维层为增韧结构,通过敏感层中裂纹结构接触面积的变化改变电阻大小,可以实现外界微小应变向电信号的转化,并且具有高灵敏、强耐久的特点,可用于可穿戴电子设备、软体机器人等领域。
-
公开(公告)号:CN116037958B
公开(公告)日:2024-08-16
申请号:CN202211733288.4
申请日:2022-12-30
Applicant: 吉林大学
IPC: B22F10/28 , B22F10/64 , B22F10/66 , B22F3/14 , B22F7/06 , B33Y10/00 , B33Y40/20 , B33Y70/00 , B33Y80/00 , C22C14/00 , C22C32/00 , B22F1/12
Abstract: 本发明属于航空材料技术领域,涉及仿鱼鳍高强高韧航空壳体、航空材料及其制备方法,具体方法是利用激光增材制造技术打印Ni基高温合金框架结构作为支鳍骨鳍条结构,将Ti‑Al‑NMe体系的混合粉末填入增材制造Ni基高温合金框架中,采用快速热压烧结层压技术,最终制得一种高强高韧的仿鱼鳍航空材料。本发明通过将激光增材制造技术和热压烧结技术结合,仿鱼鳍结构和鳍骨的生长方式,使得所得材料具有高硬度、高强韧性、强抗冲击能力和强抗疲劳性能,为航空应用领域提供了新方案。
-
公开(公告)号:CN117803730A
公开(公告)日:2024-04-02
申请号:CN202311856244.5
申请日:2023-12-28
Applicant: 中南大学 , 吉林大学 , 上海航天设备制造总厂有限公司
IPC: F16K7/12
Abstract: 本发明公开了一种基于仿生多尺度微结构的压敏破裂膜片,包括:膜片本体和弧形槽;弧形槽采用多级槽,多级槽中下一级槽位于上一级槽的槽底,下一级槽的槽口宽度小于上一级槽的槽底宽度,下一级槽的槽深小于上一级槽的槽深;多级槽中最下一级槽的槽底宽度、最下一级槽的槽口宽度以及最下一级槽的槽深均为1μm‑200μm;当膜片本体两侧的压差达到目标压差时,膜片本体上弧形槽的对应位置破裂。由于多级槽呈现多尺度级别,且最下一级槽的尺寸为1μm‑200μm,在最下一级槽附近形成应力集中区域,最下一级槽的对应位置更加敏感,更加容易在压差达到目标压差时破裂,破裂打开行为的精度更高。
-
公开(公告)号:CN117516358A
公开(公告)日:2024-02-06
申请号:CN202311276985.6
申请日:2023-09-28
IPC: G01B7/16
Abstract: 本发明公开了一种柔性应变传感器及其制备方法,应变传感器包括:基底,用于连接在一表面上;功能层,连接于所述基底,所述功能层背离所述基底的一侧设有缝结构,且在所述缝结构的至少一侧设有多个分散结构;当所述功能层受力时,所述分散结构分散集中于所述缝结构的应力。通过功能层上设置缝结构,并在缝结构周侧设置多个分散结构,在基底连接于表面后,功能层受力集中于缝结构周侧,缝结构能够将微小形变产生的应力进行集中放大,以保证应变传感器的灵敏度,并通过多个分散结构分散集中于缝结构周侧的应力,从而提高应变传感器的耐久度和延展性,增大了柔性应变传感器的量程范围。
-
公开(公告)号:CN116037958A
公开(公告)日:2023-05-02
申请号:CN202211733288.4
申请日:2022-12-30
Applicant: 吉林大学
IPC: B22F10/28 , B22F10/64 , B22F10/66 , B22F3/14 , B22F7/06 , B33Y10/00 , B33Y40/20 , B33Y70/00 , B33Y80/00 , C22C14/00 , C22C32/00 , B22F1/12
Abstract: 本发明属于航空材料技术领域,涉及仿鱼鳍高强高韧航空壳体、航空材料及其制备方法,具体方法是利用激光增材制造技术打印Ni基高温合金框架结构作为支鳍骨鳍条结构,将Ti‑Al‑NMe体系的混合粉末填入增材制造Ni基高温合金框架中,采用快速热压烧结层压技术,最终制得一种高强高韧的仿鱼鳍航空材料。本发明通过将激光增材制造技术和热压烧结技术结合,仿鱼鳍结构和鳍骨的生长方式,使得所得材料具有高硬度、高强韧性、强抗冲击能力和强抗疲劳性能,为航空应用领域提供了新方案。
-
-
-
-
-
-
-
-
-