Abstract:
미세 유체 유동 블럭(block)은 다수의 상기 미세 유체 유동 블럭(block) 간의 연결을 위한 결합 홈(groove), 다수의 상기 미세 유체 유동 블럭(block) 간의 연결을 유도하고 이탈을 방지하는 양각 또는 음각 형상, 상기 미세 유체의 유동의 경로인 유동 채널(channel), 상기 유동 채널(channel) 말단부에 위치하며, 상기 다수의 미세 유체 유동 블럭(block) 간의 연결 시, 미세 유체의 누설을 차단하는 실링(sealing)부를 포함한다. 또한, 상기 미세 유체 유동 블럭(block)간의 연결을 위한 연결 핀은 상기 미세 유체 유동 블럭(block) 간의 연결을 위한 결합 홈(groove)에 삽입되도록 상기 결합 홈(groove)의 형태에 상응하는 구조이다. 이러한 미세 유체 유동 블럭(block)과 연결 핀의 연결에 의한 결합은 유동 블럭의 연결방향을 사용자의 의도에 따라 자유롭게 결정할 수 있는 장점을 갖는다. 즉, Z축 방향으로 유체채널 연결 및 유동 블럭의 적층을 자유롭게 구성할 수 있으며, 유동 블럭의 외부표면에 형성된 양각/음각의 원뿔구조는 유동 블럭 간 자동위치정렬 및 위치고정 기능을 제공한다. 또한, 본 발명은 미세 유체 유동 블럭 및 실링부 이용해 미세 유체의 유동의 변경과 제어가 간편하게 이루어질 수 있어, 단백질 칩, 디엔에이 칩, 약물 전달 시스템, 미세 생물/화학 분석 시스템 및 생화학 반응기 등의 넓은 범위의 용도에 사용될 수 있다는 장점이 있다.
Abstract:
미세 유체 유동 블럭(block)은 다수의 상기 미세 유체 유동 블럭(block) 간의 연결을 위한 결합 홈(groove), 다수의 상기 미세 유체 유동 블럭(block) 간의 연결을 유도하고 이탈을 방지하는 양각 및/또는 음각 형상, 상기 미세 유체의 유동의 경로인 유동 채널(channel), 상기 유동 채널(channel) 말단부에 위치하며, 상기 다수의 미세 유체 유동 블럭(block) 간의 연결 시, 미세 유체의 누설을 차단하는 실링(sealing)부를 포함한다. 또한, 상기 미세 유체 유동 블럭(block)간의 연결을 위한 결합 핀은 상기 미세 유체 유동 블럭(block) 간의 연결을 위한 결합 홈(groove)에 삽입되도록 상기 결합 홈(groove)의 형태에 상응하는 구조이다. 이러한 미세 유체 유동 블럭(block)과 연결 핀의 연결에 의한 결합은 유동 블럭의 연결방향을 사용자의 의도에 따라 자유롭게 결정할 수 있는 장점을 갖는다. 즉, Z축 방향으로 유체채널 연결 및 유동 블럭의 적층을 자유롭게 구성할 수 있으며, 유동 블럭의 외부표면에 형성된 양각/음각의 원뿔구조는 유동 블럭 간 자동위치정렬 및 위치고정 기능을 제공한다. 또한, 본 발명은 미세 유체 유동 블럭 및 실링부 이용해 미세 유체의 유동의 변경과 제어가 간편하게 이루어질 수 있어, 단백질 칩, 디엔에이 칩, 약물 전달 시스템, 미세 생물/화학 분석 시스템 및 생화학 반응기 등의 넓은 범위의 용도에 사용될 수 있다는 장점이 있다.
Abstract:
The present invention relates to a method for reforming hydrophilicity on the surface of a channel inside a micro-fluidic device and a micro-fluidic device. Specifically, the present invention relates to a method for rapidly conducting reaction and inspection experiments by reforming a channel of a micro-fluidic device into hydrophilicity in order to make a rapid fluid flow inside the channel. In addition, the method prepared by the present invention is a clean process which does not generate toxic substances using a vacuum evaporation method for coating with a hydrophilic material. Therefore, the method can perform hydrophilic coating in quantity at a time, can form stable hydrophilic coating at room temperature without any influence of changes in the environment, and can be applied to a micro-fluidic element which requires optical reading by providing high transparency when formed at an appropriate thickness.
Abstract:
Disclosed in the present invention is a micro-fluidic device assembly technology for an efficient and comfortable control of micro-fluidic. According to an embodiment of the present invention of microfluidic floating block, microfluidic sealing block, and a combining method of microfluidic floating device by using thereof can control the flow of microfluidic without additional process, tubing operation or energy, by designing the shape of blocks as a customized shape, and form the microfluidic floating device easily and simply by simply producing in block unit and changing the design. The present invention is capable of applying in various bio lab on a chip which requires the controlling function thereof including protein chips, DNA chips, drug delivery system, micro organism/chemical analysis system and biochemistry effectors etc, by precisely controlling the microfluidic floating by using microfluidic floating block, microfluidic sealing block.
Abstract:
PURPOSE: A method for preparing a gold-fluorescence silica nanoparticle composite is provided to ensure excellent optical stability and to be used in a biosensor. CONSTITUTION: A gold-fluorescence silica nanoparticle composite contains: fluorescence nanoparticles; gold nanoparticles deposited on the surface of the fluorescence silica nanoparticle; and gold binding peptides conjugated on the surface of the gold nanoparticles. The fluorescence silica nanoparticles is formed in a sphere having 20-900 nm of average diameter. The fluoresence silica nanoparticles is formed by reaction of silica precursors with Rubpy(tris(2,2-bipyridyl)ruthenium(II)), FITC(fluorescein isothiocyanate), DAPI(4',6-diamidino-2-phenylindole), TRTIC(tetramethylrhodamine-5-(and 6)-isothiocyanate), rhodamine, texas red, alexa fluor 350, 405, 430, 488, 500, 514, 633, 647, 660, 680, 700, cy3, cy5, or cy7. A biosensor contains the gold-fluorescence silica nanoparticle complex.
Abstract:
PURPOSE: A plastic bio sensor and a method for manufacturing the same are provided to efficiently functionalize a surface as a desired bio receptor with a simple process while maintaining a direction of the bio receptor without a surface modification process. CONSTITUTION: A plastic bio sensor comprises a plastic substrate, a bio sensor unit device, and an upper substrate(430). The plastic substrate comprises a groove of a predetermined depth. Metal lines are respectively connected to both sides of the groove. A bio sensor unit element comprising a source, a drain electrode, and a silicon substrate is seated in the inside of the groove. The upper substrate is arranged in the upper part of the bio sensor. A minute channel is comprised in the upper substrate.