Abstract:
본 발명은 장거리 표면 플라즈몬 기반 광도파로 온도센서에 관한 것으로서, 기판과, 유한한 폭과 두께를 갖고 큰 전기전도도를 갖는 물질로 형성된 금속박막과, 상기 기판의 상부 및 상기 금속박막 사이에 차례로 적층되고, 각각 온도 변화에 따라 서로 다른 굴절률 변화를 보이는 물질로 형성된 하부 및 상부 클래드를 갖는 표면 플라즈몬 광도파로 형태의 센서부 및 상기 금속박막으로 광을 입력 및 출력하는 광섬유로 이루어진 입/출력부로 이루어진 것을 특징으로 하며, 온도에 민감한 클래드와 금속박막의 광도파로를 센서부로 사용함으로써 온도센서를 소형으로 제작할 수 있으며, 열광학계수가 다르거나 부호가 반대인 물질들을 상/하부 클래드로 사용하여 매우 민감한 광도파로형 온도센서를 구현할 수 있다. 광도파로 온도센서, 장거리 표면 플라즈몬, 금속 광도파로, 폴리머 센서.
Abstract:
본 발명에 의한 광전 인터페이스 모듈 및 그 방법은 상부에 유전체가 형성된 기판; 기판의 길이 방향으로 적어도 둘 이상 형성된 전기배선의 말단을 포함하고 있는 기판 양끝 상부에 형성된 커넥터부; 기판의 길이 방향으로 적어도 하나 이상 형성된 광도파로를 유전체 내부에 포함하고 있는 기판의 중간부분 상부에 위치한 광도파로부; 및 전기배선 중 적어도 하나 이상은 전기배선이 단절된 단절구간을 중간부분에 포함하고 있으며, 단절구간의 양쪽 말단에 대응하는 기판 상부에 위치한 광전소자;를 가진다. 본 발명에 의한 광전 인터페이스 모듈 및 그 방법은 다양한 반도체 칩 간의 광통신 및 전기 통신을 동시에 안정적으로 제공할 수 있다.
Abstract:
An optical communication module having an optical bench is provided to implement high integration by automatically coupling the optical bench having a recessed part and an optical waveguide device having a protruded part. An optical communication module is composed of an optical bench(117) formed on a substrate(101) and provided with a recessed part(113) formed in the substrate to expose the surface of the substrate, optical communication parts(103,107) formed on the substrate, and an optical waveguide device(301) comprising a protruded part(305) and an optical waveguide(307). The protruded part is formed at a part correspondent to the recessed part of the optical bench and fitted to the recessed part. The optical waveguide is optically aligned together with the optical communication part in physically coupling with the optical bench. The optical communication part and the optical waveguide device are optical-coupled automatically.
Abstract:
본 발명은 반도체 칩들 사이에서 전광소자와 광전송부 사이의 광정렬을 용이하게 하면서도 효율적이고 고집적화된 광통신 구조를 구현할 수 있고, 반도체 칩들 사이에서 광 및 전기 통신을 동시에 할 수 있는 광전배선 커넥터 모듈 및 그 커넥터 모듈을 포함한 광전 통신 모듈을 제공한다. 그 광전배선 커넥터 모듈은 광신호가 전송되는 광도파로를 포함하는 광도파로부; 및 광도파로부에 결합되고 광전 소자 및 반도체 칩을 구비한 반도체 칩부가 표면 실장된 인쇄회로보드(Printed Circuit Board:PCB) 기판으로 상기 광도파로부를 고정시키며, 하부로 철부(凸部) 또는 요부(凹部) 구조의 제1 결합부가 형성되어 있는 커넥터부;를 포함하고, 커넥터부의 제1 결합부는 PCB 기판 상면으로 형성된 요부 또는 철부 구조의 제2 결합부에 결합된다. 또한, 그 광전 통신 모듈은 PCB 기판; 상기 PCB 기판으로 실장되는 광전 소자 및 반도체 칩을 구비한 반도체 칩부; 및 상기의 광전배선 커넥터 모듈;을 포함하고, 커넥터부의 제1 결합부는 상기 PCB 기판 상면으로 형성된 요부 또는 철부 구조의 제2 결합부에 결합되며 상기 반도체 칩부의 광 및 전기 신호를 동시에 전달할 수 있다.
Abstract:
A tunable waveguide Bragg grating device is provided to suppress a thermal stress between adjacent channels effectively by forming a trench between the waveguide Bragg grating devices. A Bragg grating device(300) includes a Bragg grating region, a thermal adjusting unit(141) and a temperature adjusting unit. The Bragg grating region is formed on a substrate. The thermal adjusting unit is formed on the Bragg grating region. The temperature adjusting unit is formed under the substrate. The Bragg grating region includes a waveguide core(131), a Bragg grating(132) and a cladding layer(133). The Bragg grating is formed under the waveguide core. The cladding layer encloses the waveguide core.
Abstract:
반사파장 대역에서 군지연 스펙트럼이 파장에 대한 직선함수의 형태를 갖는 브래그 격자소자에 대해 개시한다. 상기 격자소자는 도파로의 일부로서 하기 w(z)의 형태를 구현할 수 있도록 테이퍼진 구조를 갖는 테이퍼 도파로 영역 및 테이퍼 도파로 영역에 형성된 브래그 격자를 포함한다. 이때, w(z) = w 0 - αln(1 + z/L)이고, 여기서, w는 도파로의 폭, z는 도파로 길이방향의 위치, w 0 는 테이퍼가 시작되는 위치(z=0)에서의 도파로 폭, α는 도파로의 폭(w)이 도파로 진행 모드의 유효 굴절률에 대해 미치는 영향을 나타내는 특성값, L은 테이퍼가 끝나는 위치와 이 위치에서의 도파로 폭 및 α의 값에 의해 결정되는 값이다. 또한 상기 격자소자에 의한 직선 군지연 스펙트럼의 기울기를 효과적으로 변조할 수 있는 가변수단도 함께 개시한다. 브래그 격자소자, 도파로, 테이퍼
Abstract:
유기 리간드가 배위된 반도체 양자점층을 포함하는 고출력/광대역 광소자용 유무기 나노 복합 박막 및 이를 포함하는 광소자와, 그 제조 방법에 관하여 개시한다. 본 발명 따른 유무기 나노 복합 박막은 고분자층과, 상기 고분자층 위에 자기조립되어 있는 유기 리간드가 배위된 반도체 양자점층을 포함하는 적층 구조, 또는 제1 홀을 가지는 제1 고분자층 패턴과 상기 제1 홀 내에 충진되어 있는 유기 리간드로 배위된 제1 반도체 양자점층 패턴을 포함하는 제1 복합 박막으로 이루어진다. 본 발명의 유무기 나노 복합 박막은 반도체 양자점 용액과 고분자 용액을 교대로 스핀 코팅하여 1 층씩 교대로 적층된 복수층으로 이루어지는 유기물 다층 박막으로 구성될 수 있다. 고밀도, 광대역의 반도체 양자점층과 고분자층이 물리적으로 결합된 하이브리드 광소자용 나노 복합 박막을 제공함으로써 고출력, 광대역, 고휘도, 고감도의 광소자를 구현할 수 있으며 유연성 있는 광소자를 제조할 수 있다. 반도체 양자점, 유기 리간드, 자기정렬, 스핀코팅, 광소자
Abstract:
본 발명은 전기광학효과를 이용하는 폴리머 평면 광도파로 소자의 구조에 대한 것으로, 하나의 광도파로로 입사된 광의 경로를 분할하여 두 개의 광도파로로 진행시킨 다음 다시 하나의 광도파로로 합하도록 하는 마흐-젠더 간섭계 구조를 갖는 광소자에 있어서, 분할된 하나 또는 두 개의 광도파로에 열선을 형성하고 상기 열선에 열을 인가하여 도파로의 굴절률을 변화시켜 광소자의 바이어스를 조절하는 것으로서 폴리머의 전기적 특성에 영향을 받지 않고 소자 구동의 안정성을 향상시킬 수 있다.
Abstract:
PURPOSE: A side chain type polyamide ester is provided, which is an electrooptical or non-linear optical polymer excellent in an electrooptical or non-linear optical property and thermal stability and used for producing electrooptical or non-linear optical elements. And a film produced from the polymer is also provided. CONSTITUTION: The polyamide ester contains a repeating unit represented by the formula 1, wherein D is a residue of an organic colorant molecule having the electrooptical or non-linear optical property. The polyamide ester is produced by a process containing the steps of: preparing a polyamide acid by reacting a diamine monomer and an aromatic acid dianhydride; reacting the polyamide acid and the organic colorant molecule having a hydroxy group and the electrooptical or non-linear optical property. And the electrooptical or non-linear optical polymer film is produced by forming a film from the polyamide ester and poling at a high temperature under the electric field.
Abstract:
PURPOSE: A polymer optical waveguide device by using an electro optical effect is provided, which dose not affect on the electrical characteristics of the polymer by supplying driving voltage to a heating wire and using a thermo-optic effect. CONSTITUTION: A polymer optical waveguide device by using an electro optical effect includes a first optical waveguide(120) and a second optical waveguide(130). The first optical waveguide(120) is provided with a substrate, a bottom electrode formed on the top of the substrate, a bottom clad layer formed on the bottom electrode, a core layer formed on the bottom clad layer, a top clad layer formed on the top of the core layer and a top electrode formed on the top clad layer. And, the second optical waveguide(130) is provided with a substrate, a bottom clad layer formed on the substrate, a core layer formed on the top of the bottom clad layer, a top clad layer formed on the top of the core layer and a heating wire formed on the top of the top clad layer.