Abstract:
Processes are provided for depositing titanium nanolaminate thin films that can be used, for example, in integrated circuit fabrication, such as in forming spacers in a pitch multiplication process. In some embodiments a titanium nanolaminate film comprising titanium oxide layers and titanium nitride layers is deposited on a three-dimensional feature, such as an existing mask feature. The conformal titanium nanolaminate film may be directionally etched so that only the titanium nanolaminate deposited or formed on the sidewalls of the existing three-dimensional feature remains. The three-dimensional feature is then removed via an etching process, leaving the pitch doubled titanium nanolaminate film.
Abstract:
Methods are provided for dual selective deposition of a first material on a first surface of a substrate and a second material on a second, different surface of the same substrate. The selectively deposited materials may be, for example, metal, metal oxide, or dielectric materials.
Abstract:
Methods of depositing boron and carbon containing films are provided. In some embodiments, methods of depositing B, C films with desirable properties, such as conformality and etch rate, are provided. One or more boron and/or carbon containing precursors can be decomposed on a substrate at a temperature of less than about 400° C. One or more of the boron and carbon containing films can have a thickness of less than about 30 angstroms. Methods of doping a semiconductor substrate are provided. Doping a semiconductor substrate can include depositing a boron and carbon film over the semiconductor substrate by exposing the substrate to a vapor phase boron precursor at a process temperature of about 300° C. to about 450° C., where the boron precursor includes boron, carbon and hydrogen, and annealing the boron and carbon film at a temperature of about 800° C. to about 1200° C.