Abstract:
A method for providing micro-channels in a hot gas path component includes forming a first micro-channel in an exterior surface of a substrate of the hot gas path component. A second micro-channel is formed in the exterior surface of the hot gas path component such that it is separated from the first micro-channel by a surface gap having a first width. The method also includes disposing a braze sheet onto the exterior surface of the hot gas path component such that the braze sheet covers at least of portion of the first and second micro-channels, and heating the braze sheet to bond it to at least a portion of the exterior surface of the hot gas path component.
Abstract:
A method of making a weld filler metal for a superalloy for welding is disclosed. The method includes enclosing a welding rod in a first foil layer and sintering the welding rod and the first foil layer. Related processes and articles are also disclosed.
Abstract:
A nickel alloy for direct metal laser melting is disclosed. The alloy comprising includes a powder that contains about 1.6 to about 2.8 weight percent aluminum, about 2.2 to about 2.4 weight percent titanium, about 1.25 to about 2.05 weight percent niobium, about 22.2 to about 22.8 weight percent chromium, about 8.5 to about 19.5 weight percent cobalt, about 1.8 to about 2.2 weight percent tungsten, about 0.001 to about 0.05 weight percent carbon, about 0.002 to about 0.015 weight percent boron, and about 40 to about 70 weight percent nickel. Related processes and articles are also disclosed.
Abstract:
A hot gas path component includes a substrate having an outer surface and an inner surface. The inner surface defines an interior space. The outer surface defines a pressure side surface and a suction side surface. The pressure and suction side surfaces are joined together at a leading edge and at a trailing edge. A first cooling passage is formed in the suction side surface of the substrate. It is coupled in flow communication to the interior space. A second cooling passage, separate from the first cooling passage, is formed in the pressure side surface. The second cooling passage is coupled in flow communication to the interior space. A cover is disposed over at least a portion of the first and second cooling passages. The interior space channels a cooling fluid to the first and second cooling passages, which channel the cooling fluid therethrough to remove heat from the component.
Abstract:
A hybrid additive manufacturing method comprises building an additive structure on a pre-sintered preform base, wherein building the additive structure comprises iteratively fusing together a plurality of layers of additive material with at least a first layer of additive material joined to the pre-sintered preform base, and wherein the pre-sintered preform base comprises an initial shape. The hybrid additive manufacturing method further comprises modifying the initial shape of the pre-sintered preform base comprising the additive structure into a modified shape comprising the additive structure, and, joining the pre-sintered preform base in its modified shape to a component.
Abstract:
Additive manufacturing methods include iteratively fusing together a plurality of layers of additive material to build a brazeable additive structure. The additive material comprises a mixture comprising a base alloy and a second alloy and the second alloy comprises a sufficient amount of melting point depressant to have a lower melting temperature than the base alloy.
Abstract:
Sealing device for providing seals between adjacent components, and turbomachines utilizing such sealing devices, are provided. A sealing device includes a seal plate insertable between the adjacent components, the seal plate comprising a first face and an opposing second face. The sealing device further includes a plurality of pins extending from one of the first face or the second face, the plurality of pins configured to space the one of the first face or the second face from contact surfaces of the adjacent components.
Abstract:
An article comprising a substrate; a bond layer disposed on the substrate, the bond layer comprising one or more bonding segments and at least one reinforcing segment; at least one protective layer disposed on the bond layer; and at least one cooling hole extending through the substrate, the at least one reinforcing segment and the at least one protective layer, wherein the at least one reinforcing segment reduces cracking and/or delamination at the interface between the substrate and the bond layer, and methods of making the same.
Abstract:
A method of turbulator fabrication is provided and includes additively disposing an elongate flexible member in tension onto a liner body, dispensing braze paste at an elongate flexible member-liner body interface and conducting a brazing process with respect to the braze paste to attach the elongate flexible member to the liner body.
Abstract:
Aft frame assemblies for a gas turbine transition pieces include a body comprising an exterior surface and a plurality of interior surfaces, one or more exterior cooling holes disposed on the exterior surface of the body for capturing compressor discharge air outside of the transition piece, and a supplemental component bonded to at least one of the plurality of interior surfaces of the body. At least one cooling channel is at least partially defined by the supplemental component and the interior surface that the supplemental component is bonded to, wherein the at least one cooling channel fluidly connects at least one of the one or more exterior cooling holes to one or more interior cooling outlets that discharge the compressor discharge air captured from the at least one of the one or more exterior cooling holes.