Abstract:
Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods and structures may include forming a package structure comprising a discrete antenna disposed on a back side of a device, wherein the discrete antenna comprises an antenna substrate, a through antenna substrate via vertically disposed through the antenna substrate. A through device substrate via that is vertically disposed within the device is coupled with the through antenna substrate via, and a package substrate is coupled with an active side of the device.
Abstract:
The techniques described herein reduce the substrate noise current that exists when digital and analog components reside on the same microelectronic die. Single or multiple rows of isolation vias form isolation barriers between the individual circuit blocks. The isolation vias may be hollow or (lined or filled) with a conductive or non-conductive material.
Abstract:
An antenna device includes an antenna on a substrate, a low-impedance electrostatic discharge (ESD) path for an ESD pulse from the antenna to a ground terminal, and a signal path between the antenna and either a signal terminal or an integrated circuit (IC) die. The ESD and signal paths may each include separate vias through the substrate. A capacitor may couple a signal to or from the antenna and the signal terminal (or IC die) but block low-frequency power (such as an ESD pulse). The ESD path has an electrical length of a quarter of the wavelength and so may present a high impedance to ground for the signal. The antenna device may include or be coupled to an IC die. The IC die may couple to the signal and ground terminals, e.g., opposite the substrate from the antenna.
Abstract:
Embodiments of the present disclosure relate to methods of fabricating IC devices using layer transfer and resulting IC devices, assemblies, and systems. An example method includes fabricating a device layer over a semiconductor support structure, the device layer comprising a plurality of frontend devices; attaching the semiconductor support structure with the device layer to a carrier substrate so that the device layer is closer to the carrier substrate than the semiconductor support structure; removing at least a portion of the semiconductor support structure to expose the device layer; and bonding a support structure of a non-semiconductor material having a dielectric constant that is smaller than a dielectric constant of silicon (e.g., a glass wafer) to the exposed frontend layer. The carrier substrate may then be removed.
Abstract:
In various embodiments, disclosed herein are systems and methods directed to the fabrication of a coreless semiconductor package (e.g., a millimeter (mm)-wave antenna package) having an asymmetric build-up layer count that can be fabricated on both sides of a temporary substrate (e.g., a core). The asymmetric build-up layer count can reduce the overall layer count in the fabrication of the semiconductor package and can therefore contribute to fabrication cost reduction. In further embodiments, the semiconductor package (e.g., a millimeter (mm)-wave antenna packages) can further comprise dummification elements disposed near one or more antenna layers. Further, the dummification elements disposed near one or more antenna layers can reduce image current and thereby increasing the antenna gain and efficiency.