Abstract:
A hybrid filter having an acoustic wave resonator embedded in a cavity of a package substrate is described. In an example, a packaged system includes a package substrate having a die side and a land side opposite the die side. An active die is physically and electrically coupled to the die side of the package substrate. An acoustic wave resonator (AWR) device is in a cavity on the die side of the package substrate, the AWR device including an acoustic wave resonator (AWR) die. The AWR die includes an acoustic wave resonator wherein the AWR device is directly electrically coupled to the active die.
Abstract:
Embodiments of the invention include a microelectronic device that includes a plurality of organic dielectric layers and a tunable ferroelectric capacitor formed in-situ with at least one organic dielectric layer of the plurality of organic dielectric layers. The tunable ferroelectric capacitor (e.g., varactor) includes first and second conductive electrodes and a ferroelectric layer that is positioned between the first and second conductive electrodes.
Abstract:
Embodiments of the invention include a microelectronic device that includes a first ultra thin substrate formed of organic dielectric material and conductive layers, a first mold material to integrate first radio frequency (RF) components with the first substrate, and a second ultra thin substrate being coupled to the first ultra thin substrate. The second ultra thin substrate formed of organic dielectric material and conductive layers. A second mold material integrates second radio frequency (RF) components with the second substrate.
Abstract:
Embodiments of the present disclosure may relate to a transceiver to transmit and receive concurrently radio frequency (RF) signals via a dielectric waveguide. In embodiments, the transceiver may include a transmitter to transmit to a paired transceiver a channelized radio frequency (RF) transmit signal via the dielectric waveguide. A receiver may receive from the paired transceiver a channelized RF receive signal via the dielectric waveguide. In embodiments, the channelized RF receive signal may include an echo of the channelized RF transmit signal. The transceiver may further include an echo suppression circuit to suppress from the channelized RF receive signal the echo of the channelized RF transmit signal. In some embodiments, the channelized RF transmit signal and the channelized RF receive signal may be within a frequency range of approximately 30 gigahertz (GHz) to approximately 1 terahertz (THz), and the transceiver may provide full-duplex millimeter-wave communication.
Abstract:
Embodiments of the present disclosure may relate to a transmitter to transmit a radio frequency (RF) signal to a receiver via a dielectric waveguide where the transmitter includes a plurality of mixers to generate modulated RF signals and a combiner to combine the modulated RF signals. Embodiments may also include a receiver to receive, from a dielectric waveguide, a RF signal where the receiver includes a splitter to split the RF signal into a plurality of signal paths, a plurality of filters, and a plurality of demodulators. Embodiments may also include a dielectric waveguide communication apparatus that may include the transmitter and the receiver. Other embodiments may be described and/or claimed.
Abstract:
Embodiments of the invention include a microelectronic device that includes a first substrate having radio frequency (RF) circuits and a second substrate coupled to the first substrate. The second substrate includes a first section and a second section with the second substrate being foldable in order to obtain a desired orientation of an antenna unit of the second section for transmitting and receiving communications at a frequency of approximately 4 GHz or higher.
Abstract:
Embodiments of the invention include a base station that includes a central transceiver unit (CTU) having a plurality of transceiver cores and a substrate. A printed circuit board (PCB) supports the substrate and at least one antenna unit is coupled to the PCB with at least one of a cable and a waveguide. The at least one antenna unit transmits and receives communications at a frequency of approximately 4 GHz or higher.
Abstract:
Embodiments of the invention include a reconfigurable communication system, that includes a substrate and a metamaterial shield formed over the substrate. In an embodiment, the metamaterial shield surrounds one or more components on the substrate. Additionally, a plurality of first piezoelectric actuators may be formed on the substrate. The first piezoelectric actuators may be configured to deform the metamaterial shield and change a frequency band that is permitted to pass through the metamaterial shield. Embodiments may also include a reconfigurable antenna that includes a metamaterial. In an embodiment, a plurality of second piezoelectric actuators may be configured to deform the metamaterial of the antenna and change a central operating frequency of the antenna. Embodiments may also include an integrated circuit electrically coupled to the plurality of first piezoelectric actuators and second piezoelectric actuators.
Abstract:
The systems and methods described herein provide a traveling wave launcher system physically and communicably coupled to a semiconductor package and to a waveguide connector. The traveling wave launcher system includes a slot-line signal converter and a tapered slot launcher. The slot-line signal converter may be formed integral with the semiconductor package and includes a balun structure that converts the microstrip signal to a slot-line signal. The tapered slot launcher is communicably coupled to the slot-line signal converter and includes a planar first member and a planar second member that form a slot. The tapered slot launcher converts the slot-line signal to a traveling wave signal that is propagated to the waveguide connector.