Abstract:
Systems and methodologies are described that facilitate dynamically adjusting scheduling priorities in relation to a combination of delay sensitive flows with delay requirements and best effort flows. The systems and methodologies provide optimal and efficient techniques to enable real time adjustment and assignment of bandwidth for a combination of best effort flows and delay sensitive flows. In particular, the bandwidth allocation is adjusted for each data packet such that delay requirements are met and the remaining bandwidth can be assigned to best effort flows.
Abstract:
A multi-mode base station includes a transmit standby mode and an active mode. Transmit standby mode of base station operation is a low power/low interference level of operation as compared to active mode. In transmit standby mode at least some of the synchronization signaling such as pilot tone signaling is reduced in power level and/or rate with respect to the active mode. In transmit standby mode, the base station has no active state registered wireless terminals being serviced but may have some sleep state registered wireless terminals being serviced. Mode transitions from active to transmit standby may be in response to: a detected period of inactivity, scheduling information, base station mode change signals, and/or detected wireless terminal state transition. Mode transitions from transmit standby to active may be in response to: scheduling information, access signals, wake-up signals, hand-off signals, wireless terminal state change signals, and/or base station mode change signals.
Abstract:
A method of operating a first communications device, the method comprising: receiving an interference control signal from a second communications device via an air link; determining whether the second communications device is in a cooperative communications relationship or a non-cooperative communications relationship with the first communications device; and deciding whether to disregard the interference control signal or to implement an interference control operation, based on the determination as well as a corresponding apparatus.
Abstract:
A multi-mode base station includes a transmit standby mode and an active mode. Transmit standby mode of base station operation is a low power/low interference level of operation as compared to active mode. In transmit standby mode at least some of the synchronization signaling such as pilot tone signaling is reduced in power level and/or rate with respect to the active mode. In transmit standby mode, the base station has no active state registered wireless terminals being serviced but may have some sleep state registered wireless terminals being serviced. Mode transitions from active to transmit standby may be in response to: a detected period of inactivity, scheduling information, base station mode change signals, and/or detected wireless terminal state transition. Mode transitions from transmit standby to active may be in response to: scheduling information, access signals, wake-up signals, hand-off signals, wireless terminal state change signals, and/or base station mode change signals.
Abstract:
A multi-mode base station includes a transmit standby mode and an active mode. Transmit standby mode of base station operation is a low power/low interference level of operation as compared to active mode. In transmit standby mode at least some of the synchronization signaling such as pilot tone signaling is reduced in power level and/or rate with respect to the active mode. In transmit standby mode, the base station has no active state registered wireless terminals being serviced but may have some sleep state registered wireless terminals being serviced. Mode transitions from active to transmit standby may be in response to: a detected period of inactivity, scheduling information, base station mode change signals, and/or detected wireless terminal state transition. Mode transitions from transmit standby to active may be in response to: scheduling information, access signals, wake-up signals, hand-off signals, wireless terminal state change signals, and/or base station mode change signals.
Abstract:
Un aparato para su uso en un sistema inalámbrico de acceso múltiple de espectro ensanchado basado en multiplexación por división de frecuencia ortogonal, en lo que sigue denominada como OFDM, que comprende: un generador (301) de secuencias para generar una o más secuencias, usándose dichas secuencias para representar secuencias de tono, en el que dichas secuencias son secuencias basadas en cuadrados latinos, y en el que dichas secuencias generadas tienen la forma {f si 0 , f si 1 , f si, ...} y dichas secuencias basadas en cuadrados latinos se generan k según f si k = (ak + si)mod p, en la que p, alpha y si son números enteros, p es un número primo o una potencia de un número primo, k es un índice de intervalo de tiempo de permanencia, y la periodicidad de la secuencia de cuadrados latinos es p; y un asignador (302) de secuencias para asignar una o más prescritas de dichas una o más secuencias a un usuario según ranuras de tiempo, en el que cada ranura de tiempo incluye un número prescrito de intervalos de tiempo de permanencia, teniendo cada intervalo de tiempo de permanencia una duración predeterminada y cada intervalo de tiempo de permanencia incluye uno o más tonos prescritos, y en el que dichas una o más secuencias prescritas se asignan de tal manera que en la que *j = {sj,1, sj,2, ... sj,mj} es una asignación de secuencia en la j-ésima ranura de tiempo con m j secuencias asignadas, con lo cual una asignación de secuencia en curso se solapa al máximo con asignaciones de secuencia anteriores.
Abstract:
Systems and methodologies are described that facilitate dynamically adjusting scheduling priorities in relation to a combination of delay sensitive flows with delay requirements and best effort flows. The systems and methodologies provide optimal and efficient techniques to enable real time adjustment and assignment of bandwidth for a combination of best effort flows and delay sensitive flows. In particular, the bandwidth allocation is adjusted for each data packet such that delay requirements are met and the remaining bandwidth can be assigned to best effort flows.
Abstract:
A multi-mode base station includes a transmit standby mode and an active mode. Transmit standby mode of base station operation is a low power/low interference level of operation as compared to active mode. In transmit standby mode at least some of the synchronization signaling such as pilot tone signaling is reduced in power level and/or rate with respect to the active mode. In transmit standby mode, the base station has no active state registered wireless terminals being serviced but may have some sleep state registered wireless terminals being serviced. Mode transitions from active to transmit standby may be in response to: a detected period of inactivity, scheduling information, base station mode change signals, and/or detected wireless terminal state transition. Mode transitions from transmit standby to active may be in response to: scheduling information, access signals, wake-up signals, hand-off signals, wireless terminal state change signals, and/or base station mode change signals.
Abstract:
A wireless terminal for communicating with a base station which supports a reduced synchronization signaling mode of operation and a full on synchronization mode of operation is described, the wireless terminal comprising: means for transmitting signals; means for determining if said base station is operating in said reduced synchronization signaling mode of operation; and means for controlling said means for transmitting to transmit a signal used to trigger the base station to transition into a more active synchronization signaling mode of operation when said means for determining that said base station is operating in said reduced synchronization mode of operation.
Abstract:
Techniques for sending control messages are described. In an aspect, assignment messages may be acknowledged based on either linked or dedicated acknowledgement (ACK) resources. A terminal may receive an assignment message from a base station, determine whether to acknowledge the assignment message, and determine ACK resources to use to acknowledge the assignment message. The ACK resources may be linked to a control block on which the assignment message was received, linked to resources given by the assignment message, or assigned to the terminal. The terminal may send the acknowledgement on the ACK resources. In another aspect, a control message may be acknowledged based on ACK resources determined based on the control message or the control block. The ACK resources may be linked to resources assigned by the control message or linked to the control message. The terminal may send an acknowledgement for the control message on the ACK resources.