Abstract:
In a notifying device comprising a notifying unit 2 having incorporated therein a vibrator to be resonated by a drive signal fed thereto, and a signal preparing circuit 5 for feeding the drive signal to the notifying unit 2, the signal preparing circuit 5 prepares a drive signal Dv varying in frequency within a predetermined range including the resonance frequency of the vibrator of the unit 2 and feeds the signal to the notifying unit 2. The variation of frequency of the drive signal is determined in correspond relation with a variation in the resonance frequency of the vibrator due to tolerances for specifications which govern the resonance frequency. The drive signal has an alternating waveform of rectangular waves or sine waves, and the frequency thereof varies periodically from 1.37 to 2.98 Hz. The notifying device achieves a satisfactory notifying effect despite the variation of the resonance frequency of the vibrator.
Abstract:
An apparatus for controlling a vibration includes a vibration transfer unit; at least one pair of oscillators disposed spaced apart from each other in the vibration transfer unit, and configured to generate a vibration in the vibration transfer unit; at least one driver configured to selectively drive the at least one pair of oscillators; and a controller configured to control the at least one driver and thereby move a center of the vibration within the vibration transfer unit so as to create a moving vibration sensation.
Abstract:
A circuit of the present invention is a driving circuit for driving a vibrator having a mechanical vibration system which resonates at a resonance frequency. The driving circuit outputs to the vibrator at least two signals of different frequencies which are included in a frequency range including the resonance frequency. The vibrator has a function of converting an electric signal into at least one of a sound and a vibration.
Abstract:
A digital circuit for driving an audio transducer that provides consistent tonal quality over a range of volume levels, without requiring a variable gain analog amplifier. A fixed amplitude ringer tone is multiplied, or amplitude modulated, by a higher frequency digital pulse train to produce a transducer driving signal. The timbre of the transducer driving signal is similar to that of the fixed amplitude ringer tone, but the volume of the sound produced by the transducer varies with the mark-space ratio of the pulse train.
Abstract:
A pulse signal, having a buzzer-driving frequency, for driving a buzzer (3) is generated by a free running timer of a timer management section of a microcomputer (1). The timer management section operates independently of software processing of the microcomputer (1). A transistor (2) is turned on and off by the pulse signal having the buzzer-driving frequency. Accordingly, electricity flows through the buzzer (3). The buzzer (3) in turn, generates a sound.
Abstract:
A vibrating alert device not startling the user by its vibration and able to improve the effectiveness of the alert, provided with a vibration strength control circuit becoming active for a duration of an incoming call signal and repeatedly gradually increasing a drive voltage supplied to the vibrating motor in stages from a minimum vibration strength voltage to a maximum vibration strength voltage, the vibration control circuit having a resistance type voltage division circuit which generates different vibration strength voltages from a minimum voltage strength voltage to a maximum voltage strength and a voltage switching circuit for selecting and outputting in a rising order the vibration strength voltages for each constant time.
Abstract:
A screening machine that uses electrically controlled transducers to vibrate a separating screen. The transducers can be piezoelectric patches, discrete piezoelectric components, or electromagnetic shakers. Further, the transducers can be coupled directly to the screen or through a vibration amplifier. The transducers and/or amplifiers can be coupled to the screen at different attachment locations. One or more of the transducers can be used as sensors to provide feedback for operation control.
Abstract:
An AC switch is created by switching devices to modify the output of an ultrasonic generator. The AC switch introduces a modification circuitry into and out of the output stage of the ultrasonic generator. The AC switch is placed in parallel with the modification circuitry when inserting the modification circuitry into a conduction line of the ultrasonic generator. It is placed in series when inserting the modification circuitry between two nodes of the ultrasonic generator. A control circuit is associated with the AC switch to turn on and off the ultrasonic generator, overcoming the inability of triacs to turn off power when conducting ultrasonic current. The introduction of the modification circuitry by the AC switch allows the modification of the frequency, amplitude, power, impedance and waveform of an ultrasonic generator.
Abstract:
An apparatus levitates and transports an object. The apparatus levitates the object above the surfaces of a plurality of vibrators by air pressure of sound waves that are generated by the vibrators. The apparatus has a plurality of vibration devices, each of which corresponds to one of the vibrators. Each vibration device includes a first transducer for vibrating the corresponding vibrator. Each transducer includes a super-magnetostrictive material. A common power source is connected to at least two of the first transducers for actuating the first transducers.
Abstract:
This invention includes a square wave signal generating circuit 20 for generating a square wave signal whose frequency changes; a MOS transistor 12 which is turned on/off on the basis of the square wave signal to supply a driving current to a vibrator 14; and a frequency shift detecting circuit 24 for detecting a frequency shift between the square wave signal from the square wave generating circuit and a resonance frequency of the vibrator. The shift in the frequency generated by the square wave generating circuit is trimmed by a signal detected by the frequency shift detecting circuit.