Abstract:
The invention relates to a torsion sonotrode, comprising two mutually opposing end faces (S1, S2) and a circumferential surface (U) which surrounds a torsion axis (T) and on which at least one working surface (A1, A2, A3, A4) is provided at a radial distance from the torsion axis (T).
Abstract:
The invention relates to a torsion sonotrode, comprising two mutually opposing end faces (S1, S2) and a circumferential surface (U) which surrounds a torsion axis (T) and on which at least one working surface (A1, A2, A3, A4) is provided at a radial distance from the torsion axis (T).
Abstract:
A vibration welding system has a pair of electromagnets coupled to a first workpiece support for effecting reciprocating movement of the first workpiece support relative to a second workpiece support, and an electrical drive system coupled to the electromagnets for successively energizing and de-energizing the electromagnets out of phase with each other to effect the reciprocating movement of the first workpiece support. The drive system includes a source of DC current; multiple controllable electronic switching devices for controllably coupling the source to, and de-coupling the source from, each of the electromagnets; current sensors coupled to the electromagnets and producing signals representing the currents supplied to the electromagnets; and control circuitry coupled to the electronic switching devices and receiving the signals produced by the current sensors for turning the switching devices on and off to control the energizing and de-energizing of the electromagnets to effect reciprocating movement of the first workpiece support.
Abstract:
The invention utilizes a multiple frequency ultrasound generator driving a multiple frequency harmonic transducer array to improve cleaning and processing effects while eliminating damage to parts being cleaned. An AC switch and circuitry to modify the output of an ultrasound generator in combination with techniques such as random AM and FM signals are used to produce ultrasound waves that have no single frequency components which eliminates exciting parts being cleaned into resonance. Generator signals that increase cavitation efficiency and that have successive time periods with predominately stable cavitation and predominantly transient cavitation further improve the performance of the cleaning or processing systems.
Abstract:
The invention utilizes a multiple frequency ultrasound generator driving a multiple frequency harmonic transducer array to improve cleaning and processing effects while eliminating damage to parts being cleaned. An AC switch and circuitry to modify the output of an ultrasound generator in combination with techniques such as random AM and FM signals are used to produce ultrasound waves that have no single frequency components which eliminates exciting parts being cleaned into resonance.
Abstract:
A method and apparatus for determining the resonance frequency for a vibration welder are described. The vibration frequencies at a predetermined vibration level and on both sides of the resonance frequency are derived and are then used to determine and operate the vibration welder at the resonance frequency. In one embodiment the vibration frequency of the vibration welder is swept up from one side of the resonance point and the vibration amplitude is monitored and a first frequency at a particular vibration amplitude is determined. The same sweeping is done from the other side of the resonance point and a second frequency determined for the same vibration amplitude reference level but on the other side of the resonance frequency. The two measured frequencies are then combined to yield the resonance frequency which can then be used to operate the vibration welder.
Abstract:
An ultrasonic processing method is disclosed wherein during the processing time interval the motional amplitude and engaging force of the resonating horn and thereby the power and engaging pressure to the workpiece is varied to improve weld strength and decrease weld cycle time. The variation in motional amplitude and engaging force may be in response to a process condition such as a change in dimensions of the workpiece, a sharp rise in the transducer power curve, or in response to the lapse of a predetermined time interval.