Abstract:
A computer determines a subsequent state of a steel volume, based on an instantaneous initial state of said steel volume and at least one volumetric surface, the temporary influence quantities acting on said steel volume, by resolution of an equation of thermal condition and phase change. The states include for at least one volumetric element of the steel volume, a local distribution in concentration of a alloy element mobile in the steel, the local proportions of the modeled phases of the steel and a quantity describing a local energy content of the steel. The phases include austenite and another phase, generally, ferrite or cementite. In the context of the change equation, the concentration levels of the mobile alloy element, which are located on either side of the phase boundary, between the austenite and the other phase are determined by resolution of a Stephan problem.
Abstract:
The present invention concerns a computer which determines a subsequent state of a steel volume, based on an instantaneous initial state of said steel volume and at least one volumetric surface, the temporary influence quantities acting on said steel volume, by resolution of an equation of thermal condition and phase change. The states include for at least one volumetric element of the steel volume, a local distribution in concentration of a alloy element mobile in the steel, the local proportions of the modeled phases of the steel and a quantity describing a local energy content of the steel. The phases comprise austenite and another phase, generally, ferrite or cementite. In the context of the change equation, the concentration levels of the mobile alloy element, which are located on either side of the phase boundary, between the austenite and the other phase are determined by resolution of the Stephan problem.
Abstract:
A method of controlling a continuous steel strip casting process based on customer-specified requirements includes a general purpose computer in which product specifications of steel product ordered by a customer is entered. The computer is configured to automatically map the product specifications to process parameters/set points for controlling the continuous steel strip casting process in a manner to produce the customer ordered product, and in one embodiment produces a process change report detailing such process parameters/set points for operator use in physically implementing such process parameters/set points in the strip casting process. Alternatively, the computer may provide the process parameters/set points directly to the strip casting process for automatic control thereof in producing the customer ordered steel product. The process of the present invention is capable of substantially reducing the time between a customer request for a steel product and delivery thereof over that of conventional steel manufacturing processes.
Abstract:
A method of controlling a continuous steel strip casting process based on customer-specified requirements includes a general purpose computer in which product specifications of steel product ordered by a customer is entered. The computer is configured to automatically map the product specifications to process parameters/set points for controlling the continuous steel strip casting process in a manner to produce the customer ordered product, and in one embodiment produces a process change report detailing such process parameters/set points for operator use in physically implementing such process parameters/set points in the strip casting process. Alternatively, the computer may provide the process parameters/set points directly to the strip casting process for automatic control thereof in producing the customer ordered steel product. The process of the present invention is capable of substantially reducing the time between a customer request for a steel product and delivery thereof over that of conventional steel manufacturing processes.
Abstract:
A method and an installation for the endless production of hot-rolled, flat products from thin cast strip. The installation includes a casting machine for producing cast strip, a device for cooling the cast strip under inert gas, a single-stand roughing train, a multi-stand finishing train, a device for cooling, heating or maintaining the temperature of the hot-rolled strip, according to choice, between the roughing train and the finishing train, shears for separating the hot-rolled strip from coil to coil, a delivery roller table with devices for cooling the hot-rolled strip and with coiling machines arranged downstream of the finishing train for coiling up the finished strip.
Abstract:
The invention relates to a method for rolling a metal strip (6) in a reverse rolling mill (1) with a coiler located upstream and a coiler located downstream (4,5). The metal strip is wound off the upstream coiler (4) with a strip thickness (d) and at a strip temperature (T) above a set temperature (T*). It is then passed through the reverse rolling mill (1) with a first draught of at most 5% and at a speed (v) before being wound up by the downstream coiler (5). The speed (v) at which the strip is passed through the rolling mill is selected with the aim of ensuring that the strip has reached the set temperature (T*) by the time it is wound up. The strip is then wound off the downstream coiler (5), passed through the reverse rolling mill (1) with a second draught of at least 10% and wound up by the upstream coiler (4).
Abstract:
A process for producing a steel strip with properties of a cold-rolled product. The process including comprising the sequential steps of: a) producing a thin slab 30 to 100 mm thick from a steel melt by continuous casting in a continuous casting machine, and, after a cast strip emerges from a mold of the continuous casting machine, cast rolling the cast strip with a liquid core to reduce thickness of the cast strip by at least 10%; b) descaling the thin slab produced according to step a); c) hot rolling the descaled thin slab at temperatures in a range of 1150.degree. to 900.degree. C. for reducing thickness by at least 50% to produce an intermediate strip with a maximum thickness of 20 mm; d) after hot rolling, accelerated cooling of the intermediate strip to a temperature in a range of 850.degree. to 600.degree. C.; e) rolling down the cooled intermediate strip by isothermic rolling at 850.degree. to 600.degree. C. on a finishing train with at least three stands into strips with a maximum thickness of 2 mm, whereby the strip thickness is reduced by at least 25% per roll pass; and f) subsequently cooling the isothermic rolled steel strip in accelerated fashion to a temperature no greater than 100.degree. C.
Abstract:
A production plant for rolling hot strip from slabs produced by continuous casting, wherein a shearing machine is arranged following a continuous casting plant of the casting machine and in front of an equalizing furnace, and an additional shearing machine and a descaling unit are arranged following the equalizing furnace and in front of a rolling mill, and wherein a heating or cooling unit and a strip reeling unit of coiling machine are arranged following the rolling mill. A first roll stand group forming a continuously operating rolling train is composed of several four-high stands, for example, five four-high stands; individual heating devices are provided also between the successive four-high stands of this group of roll stands; in addition, the reeling unit or the reeling machine is configured as a double reeling machine.
Abstract:
A production plant for producing hot-rolled flat products includes a rolling train composed of a plurality of roll stands, a run-out table with devices for cooling the hot strip, and with subsequently arranged coiling machines for coiling the strip. At least the first roll stand of the rolling train is a reversing stand. At least one reeling furnace each is arranged in front of and following the reversing stand. A controllable cooling unit is provided between the reversing stand and the reeling furnace in front of the reversing stand.
Abstract:
In the manufacture of formable steel strip having a thickness between 0.5 and 1.5 mm, the following process steps are performed sequentially in a continuous process:(a) in a continuous casting machine forming liquid steel into a hot slab having a thickness of less than 100 mm,(b) hot rolling the hot slab from step (a), in the austenitic region and below 1100.degree. C., to form srip having a thickness of between 2 and 5 mm,(c) cooling the strip from step (b) to a temperature between 300.degree. C. and the temperature T.sub.t at which 75% of the steel is converted to ferrite,(d) rolling the cooled strip from sep (c) at said temperature between 300.degree. C. and T.sub.t with a thickness reduction of at least 25% at a rolling speed not more than 1000 m/min.,(e) coiling the rolled strip from step (d).