Abstract:
A tubular type ozone generator with inner and outer concentric electrodes and a middle dielectric member. One end is sealed to permit feed gas traversing the inner gap between the inner electrode and the dielectric member to reverse direction and to traverse the outer gap between the dielectric member and the outer electrode. A method for producing ozone using a tubular type ozone generator where first the total feed gas is passed in one direction between an electrode and the dielectric member for producing ozone, reversed, and then passed in the reverse direction between the dielectric member and the other electrode producing additional ozone. A hollow inner electrode permits more efficient cooling of the inner electrode. A plurality of ozone generators are combined with intake and output manifolds for the feed gas and produced ozone.
Abstract:
In ozone generators having segmented inner electrodes (7), the electric connection of the segments is effected by means of plane contact areas (10) applied to the ends of the segments. A tension rod (11) passing through all segments ensures cohesion and, at the same time, is used as the connecting element for supplying the ozone generator with power.
Abstract:
An ozone generator in which an air pump discharges air through a plurality of juxtaposed, successive, tubular housings, each of which has concentric wire mesh electrodes separated by dielectric tubes. A high a.c. potential, insufficient to cause a spark discharge, is imposed across the electrodes so that the oxygen of the air is progressively converted into ozone. The ozone laden air is directed through non-return valves into water flowing in a pipe for the purpose of destroying bacteria therein.
Abstract:
An improved system and method for controlling ozone concentration in connection with a multi-chamber tool. The system and method involve a first and a second concentration controller in combination with an ozone generator. The first concentration controller detects an EVENT (i.e., one of the chambers in the multi-chamber tool coming on-line or off-line) and in response provides a power instruction to the ozone generator in accordance with a predictive control algorithm. The first concentration controller has a fast (i.e., about 1 second) response time. The second concentration controller is masked from the ozone generator during the EVENT, but otherwise controls the generator after an interval of time has lapsed after the EVENT. The second concentration controller has a slower response time than the first concentration controller, however the second concentration controller provides the system with long-term stability and can be used to provide updated data to the predictive control algorithm.
Abstract:
An improved system and method for controlling ozone concentration in connection with a multi-chamber tool. The system and method involve a first and a second concentration controller in combination with an ozone generator. The first concentration controller detects an EVENT (i.e., one of the chambers in the multi-chamber tool coming on-line or off-line) and in response provides a power instruction to the ozone generator in accordance with a predictive control algorithm. The first concentration controller has a fast (i.e., about 1 second) response time. The second concentration controller is masked from the ozone generator during the EVENT, but otherwise controls the generator after an interval of time has lapsed after the EVENT. The second concentration controller has a slower response time than the first concentration controller, however the second concentration controller provides the system with long-term stability and can be used to provide updated data to the predictive control algorithm.
Abstract:
An electro chemical conversion cell that can break down certain gasses to provide ozone and monovalent oxygen from a supplied volume of a suitable 02-containing gas. The conversion cell is provided with at least one metal mesh electrode within a generator reaction chamber, and a power supply which is adapted to supply a high alternating electric current voltage to at least partially break-down O 2 in the input gas to yield ozone. A fluid flow passage extends through the reaction chamber as a generally elongated passage through the reaction cavity. The fluid flow passage extends from an upstream end, where the O 2 -containing gas is initially supplied into the housing, to a downstream end where treated gas either flows outwardly therefrom under pressure or is evacuated from the housing. In a simplified construction, the fluid flow passage is delineated by a series of electrically insulating plates and/or spacers which are used to partition the reaction cavity.
Abstract:
오존 농도를 제어하기 위해 개선된 시스템 및 방법이 멀티-챔버 툴과 연결된다. 시스템 및 방법은 오존 발생기와 조합된 제1 및 제2 농도 제어기를 포함한다. 제1 농도 제어기는 이벤트(EVENT)(즉, 멀티-챔버 툴의 챔버들중 하나가 온라인 또는 오프라인되는 것)를 검출하고 이에 응답하여 예측 제어 알고리즘에 따라 오존 발생기에 파워 명령을 제공한다. 제1 농도 제어기는 고속(즉, 약 1초) 응답 시간을 갖는다. 제2 농도 제어기는 이벤트중에 오존 발생기로부터 차단되나, 이벤트 이후에 경과되는 일정 시간 간격이 지나면 발생기를 제어한다. 제2 농도 제어기는 제1 농도 제어기보다 느린 응답 시간을 가지나, 제2 농도 제어기는 시스템에 긴 시간의 안정성을 제공하고 예측 제어 알고리즘에 업데이트된 데이터를 제공하는데 사용될 수 있다.
Abstract:
본 발명은 수중에서 전기분해 방식으로 오존을 발생시킴에 있어, 전기분해 발생 코어를 병렬방식으로 다수개 연결되게 하여 물의 어떠한 특성에서도 적절한 농도를 유지한 오존의 양을 생성할 수 있도록 한 것이다. 본 발명은 수중에서 전기분해 방식으로 오존을 발생시키는 오존발생기에 있어서, 외부의 원수를 오존발생기 내부로 유입하는 유입구; 프레임상에 양극선과 음극선으로 이루어진 백금선을 동일한 방향으로 일정 간격 이격된 상태로 평행하게 권취하되, 병렬방식으로 다수개 구비되어 있는 전기분해 발생 코어; 상기 병렬방식으로 다수개 연결되어 있는 전기분해 발생 코어 사이에는 다수의 통공이 조밀하게 형성되어 있는 격벽; (+), (-)전극을 형성하여 오존발생기 내의 병렬로 연결된 다수개의 전기분해 발생 코어에 전원을 공급하는 덮개; 상기 전기분해 발생 코어에 의한 전기분해 반응으로 생성된 오존수와 수소가스를 외부로 배출할 수 있도록 덮개 소정의 위치에 형성되는 배출구;로 이루어지는 전기분해 발생 코어가 병렬 연결되어 있는 오존발생기에 관한 것이다.