Abstract:
The present invention provides bio-electrochemical systems having various configurations for the treatment of water, wastewater, gases, and other biodegradable matter. In one aspect, the invention provides bio-electrochemical systems configured for treating wastewater while generating multiple outputs. In another aspect, the invention provides bio-electrochemical systems configured for improving the efficiency of electrodialysis removal systems. In yet another aspect, the invention provides bio-electrochemical systems configured for use in banks and basins.
Abstract:
A continuous method for the treatment of a spent aqueous caustic stream used to scrub a hydrocarbon process stream to remove oxidizable sulfur-containing compounds includes: a. mixing an oxidizing hypochlorous acid stream produced from an aqueous brine solution with the aqueous caustic stream to form a reactive mixed feedstream; b. contacting the reactive mixed feedstream with at least one catalyst to promote the oxidation of the sulfur-containing compounds and the neutralization of the sodium hydroxide; and c. recovering a neutral treated product stream comprising aqueous sodium sulfate, sodium carbonate and sodium chloride that is odorless, non-toxic and environmentally acceptable for discharge into the sea or into a conventional sewage treatment system. Preferably, the hypochlorous acid is produced by an electrolyzer that also produces a (1) hydrogen stream that is directed to a PEM fuel cell to generate at least a portion of the electrical power requirement of the electrolyzer, and (2) water that is combined with fresh sodium hydroxide from the electrolyzer to form a fresh caustic stream for use in scrubbing the hydrocarbon process stream.
Abstract:
Batterie betriebenes Handsprühgerät mit einem Flüssigkeitsbehälter (A), einem Sprühkopf (B) mit Sprühdüse (B 1 ), einer Elektrolysezelle (C 1 ), einer Wasserpumpe (C 2 ), Steigrohr und Leitungen, einer elektrischen/elektronischen Steuerung (G) mit einem Fingerabzug (F) und einem Batteriefach (E). Die Elektrolysezelle (C 1 ) enthält dotierte Volldiamant-Elektroden.
Abstract:
A method for killing microorganisms in water, by passing an aqueous feed solution comprising of water containing some form of halide salt into a non-membrane electrolysis cell comprising an anode and a cathode, adjacent to the anode, while flowing electrical current between the anode and the cathode to electrolyze the aqueous feed solution and convert the halide salt to antimicrobial mixed oxidants.
Abstract:
A method and apparatus for desalinating saltwater using concentration difference energy is disclosed. In order to desalinate saltwater that is contained within a product chamber, a drive cell is used to generate a drive voltage. The product chamber has a desalination voltage such that when a sufficient voltage is applied to the product chamber, anions and cations migrate out of the product chamber, thereby desalinating the water. The sufficient voltage, which includes the drive voltage and which is equal to or greater than the desalination voltage, is applied to the product chamber, consequently effecting desalination. Beneficially, concentration difference energy can be generated using a concentrated solution, which can be generated using, for example, solar energy.
Abstract:
A continuous method for the treatment of a spent aqueous caustic stream used to scrub a hydrocarbon process stream to remove oxidizable sulfur-containing compounds includes: a. mixing an oxidizing hypochlorous acid stream produced from an aqueous brine solution with the aqueous caustic stream to form a reactive mixed feedstream; b. contacting the reactive mixed feedstream with at least one catalyst to promote the oxidation of the sulfur-containing compounds and the neutralization of the sodium hydroxide; and c. recovering a neutral treated product stream comprising aqueous sodium sulfate, sodium carbonate and sodium chloride that is odorless, non-toxic and environmentally acceptable for discharge into the sea or into a conventional sewage treatment system. Preferably, the hypochlorous acid is produced by an electrolyzer that also produces a (1) hydrogen stream that is directed to a PEM fuel cell to generate at least a portion of the electrical power requirement of the electrolyzer, and (2) water that is combined with fresh sodium hydroxide from the electrolyzer to form a fresh caustic stream for use in scrubbing the hydrocarbon process stream.
Abstract:
Hypochlorous acid is produced economically without the supply of electricity energy from outside. To actualize the production, a photoelectric cell having a titanium oxide electrode 1 and a counter electrode 2 is placed in an electrolyte solution 3 containing a metal chloride. Under the environment that oxygen can be supplied to the counter electrode 2 of the photoelectric cell in the electrolyte solution 3, the titanium oxide electrode 1 is irradiated with light.
Abstract:
Apparatus for the production of disinfectant comprises a portable, vented vessel (10) to contain a chloride solution, a pair of electrodes (14, 15) extending into or adapted to extend into the vessel, portable means (16) for generating a direct electric current and applying the current to the electrodes, means (17) for monitoring that current, and a second vessel, or a defined larger volume of the vented vessel, for contacting the hypochlorite solution produced in the portable vessel with water.