Abstract:
The present disclosure is directed at methods, systems and techniques for desalinating saltwater while generating electricity. A reverse electrodialysis (RED) stack is used to generate electricity, and the generated electricity is used to desalinate saltwater in an electrodialysis reversal (EDR) stack. As the RED stack relies on a concentration difference between two ionic fluids to generate electricity, a desalination plant that incorporates the RED and EDR stacks as described herein is referred to as a concentration difference energy plant. Brine discharge from a first desalination plant, such as a reverse osmosis plant, can be partially desalinated by the concentration difference energy plant, and the partially desalinated brine may optionally be returned to the first desalination plant for further desalination. This can result in several benefits. For example, the concentration difference energy plant can remove larger ionic species, which if not removed could cause scaling in the first desalination plant.
Abstract:
The present disclosure describes a modular humidification-dehumidification (HDH) apparatus and system for concentrating a solution including a plurality of internal modules coupled to each other. The plurality of internal modules includes a humidification module and a dehumidification module in gas flow communication with the humidification module. The humidification module includes humidification media facilitating evaporation of liquid from the solution to gas as the solution passes through the humidification media thereby producing a concentrated solution and a humidified gas. The dehumidification module includes a condensing heat exchanger for condensing vapour from the humidified gas.
Abstract:
The present disclosure is directed at a modular apparatus for a saltwater desalinating system, and a method for using same. The apparatus includes multiple internal modules that are compressively coupled to each other. Each of the internal modules includes a pair of rigid end plates located at opposing ends of the internal module, and a stack of membrane bounded compartments that are layered from one of the end plates to the other. The modular apparatus can be used in a membrane based desalination system, which includes concentration difference energy systems, electrodialysis reversal systems, and membrane distillation systems. The modular apparatus helps to mitigate problems such as leakage and buckling in such systems, and can be used to increase membrane packing density and, accordingly, desalination efficiency.
Abstract:
A hybrid electrochemical water softening desalination system softens water by both electrodialytical and non-electrodialytical means before desalinating the softened water in a primary desalination subsystem. The concentrate produced as byproduct from the desalination is provided to a concentrate channel of the electrodialysis device employed, and the electrodialysis device extracts multivalent ions from the water to the concentrate channel. In some embodiments the electrodialysis device provides softened water directly to the primary desalination subsystem. In other embodiments the electrodialysis device provides electrodialytically softened water to a non-electrodialytical softening subsystem for further softening, before the softened water is supplied to the primary desalination subsystem. The arrangement integrates the concentrate disposal line of the primary desalination subsystem with the functioning of the electrodialysis device.
Abstract:
A method and apparatus for desalinating saltwater using concentration difference energy is disclosed. In order to desalinate saltwater that is contained within a product chamber, a drive cell is used to generate a drive voltage. The product chamber has a desalination voltage such that when a sufficient voltage is applied to the product chamber, anions and cations migrate out of the product chamber, thereby desalinating the water. The sufficient voltage, which includes the drive voltage and which is equal to or greater than the desalination voltage, is applied to the product chamber, consequently effecting desalination. Beneficially, concentration difference energy can be generated using a concentrated solution, which can be generated using, for example, solar energy.
Abstract:
The present disclosure describes a modular humidification-dehumidification (HDH) apparatus and system for concentrating a solution including a plurality of internal modules coupled to each other. The plurality of internal modules includes a humidification module and a dehumidification module in gas flow communication with the humidification module. The humidification module includes humidification media facilitating evaporation of liquid from the solution to gas as the solution passes through the humidification media thereby producing a concentrated solution and a humidified gas. The dehumidification module includes a condensing heat exchanger for condensing vapour from the humidified gas.
Abstract:
Described herein are a method and system for desalinating saltwater using concentration difference energy. A "five stream" dialytic stack is described that can be used to desalinate saltwater at a relatively high recovery ratio. The dialytic stack may include, for example, one or more drive cells having a paired concentrate and a diluent-c chamber in ionic communication with a product chamber that is adjacent to an anion and a cation discharge chamber each filled with diluent-p. The drive cell applies a drive voltage across the product chamber, and when the drive voltage exceeds a desalination voltage of the product chamber, the saltwater in the product chamber is desalinated. The diluent-p may be at a lower ionic concentration than the diluent-c, which may be at a lower concentration than the concentrate. The relatively high concentrations of the concentrate and the diluent-c facilitate a relatively high recovery ratio, while the relatively low concentration of the diluent-p facilitates a relatively low desalination voltage. The dialytic stack may accept brine discharged from a first desalination plant and may use this brine as a source of the concentrate, diluent-c, or diluent-p. Alternatively, the dialytic stack may accept the brine as saltwater to be desalinated, and may then output desalinated brine back to the first desalination plant for further desalination. Processing the brine in the dialytic stack may decrease its volume, decreasing costs associated with treating or otherwise disposing of the brine.
Abstract:
Described herein are a method and system for desalinating saltwater using concentration difference energy. A “five stream” dialytic stack is described that can be used to desalinate saltwater at a relatively high recovery ratio. The dialytic stack may include, for example, one or more drive cells having a paired concentrate and a diluent-c chamber in ionic communication with a product chamber that is adjacent to an anion and a cation discharge chamber each filled with diluent-p. The drive cell applies a drive voltage across the product chamber, and when the drive voltage exceeds a desalination voltage of the product chamber, the saltwater in the product chamber is desalinated. The diluent-p may be at a lower ionic concentration than the diluent-c, which may be at a lower concentration than the concentrate. The relatively high concentrations of the concentrate and the diluent-c facilitate a relatively high recovery ratio, while the relatively low concentration of the diluent-p facilitates a relatively low desalination voltage. The dialytic stack may accept brine discharged from a first desalination plant and may use this brine as a source of the concentrate, diluent-c, or diluent-p. Alternatively, the dialytic stack may accept the brine as saltwater to be desalinated, and may then output desalinated brine back to the first desalination plant for further desalination. Processing the brine in the dialytic stack may decrease its volume, decreasing costs associated with treating or otherwise disposing of the brine.
Abstract:
A method and apparatus for desalinating saltwater using concentration difference energy is disclosed. In order to desalinate saltwater that is contained within a product chamber, a drive cell is used to generate a drive voltage. The product chamber has a desalination voltage such that when a sufficient voltage is applied to the product chamber, anions and cations migrate out of the product chamber, thereby desalinating the water. The sufficient voltage, which includes the drive voltage and which is equal to or greater than the desalination voltage, is applied to the product chamber, consequently effecting desalination. Beneficially, concentration difference energy can be generated using a concentrated solution, which can be generated using, for example, solar energy.