Abstract:
A plastic film is produced by blending a polymer with particles encapsulating an oxidizing agent, such as hydrogen peroxide. Optionally, an “oxodegradable” and/or “oxo biodegradable” additive that promotes degradation of the polymer in the presence of oxygen may be blended into the plastic film. The presence of the oxidizing agent within the plastic film ensures degradation of an article of manufacture, e.g., a plastic bag, when it is disposed of in an anaerobic environment, such as a landfill. In some embodiments, the particles are microcapsules and/or nanocapsules each having a polymer shell encapsulating a core that includes the oxidizing agent. In some embodiments, the particles are microparticles and/or nanoparticles each having a matrix in which the oxidizing agent is encapsulated.
Abstract:
A method for preparing a PBAT laminated membrane composite material uses PBAT or a material with PBAT as the main component and other biodegradable plastic or superfine calcium carbonate in a mixture. The temperature of the mixture is increased by means of a lamination machine segment by segment, the material is heated slowly to a molten state, and the temperature of a rolling shaft is controlled by introducing cold water to the rolling shaft when the lamination machine conducts membrane lamination, so that the temperatures of rolling wheels and the laminated membrane are controlled.
Abstract:
Bioplastic compositions containing between 2 wt. % and 25 wt. % of at least one starch, between 40 wt. % and 65 wt. % of at least one plasticizer, and between 1 wt. % to 10 wt. % of at least one acid are used as insulation materials. A method of making a bioplastic composition includes the steps of heating a first aqueous mixture containing at least one plasticizer and at least one acid; adding at least one starch to the first aqueous mixture to produce a second aqueous mixture; heating and mixing the second aqueous mixture to produce a precipitate; and separating the precipitate from residual liquid of the second aqueous mixture to produce a bioplastic composition.
Abstract:
A method for the preparation of a biodegradable polyamide-based composition comprising glycine substantially uniformly dispersed into a polyamide matrix, the method comprising: first mixing more than 2 weight percent glycine, at least one polyamide-producing monomer, and optionally water or other additives, to form a suspension wherein the glycine is substantially uniformly dispersed therein; then polymerizing the at least one polyamide-producing monomer with the glycine substantially uniformly dispersed in situ to provide a polyamide matrix wherein the glycine remains substantially uniformly dispersed in the resulting polyamide matrix to form the biodegradable polyamide-based composition.
Abstract:
Disclosed is a biodegradable sheet prepared from biodegradable material comprising a gas barrier material, wherein the gas barrier material may be a nanoclay and/or polyvinyl alcohol.
Abstract:
The present invention relates to shape memory polymers (SMP) and especially to shape memory polymer containing a water soluble non-reactive plasticiser and to uses thereof.
Abstract:
Biodegradable detergent compositions comprising enzymes and 1,3-propanediol are provided. The 1,3-propanediol in the composition is biologically derived and enhances the stability of the enzymes in the composition. The compositions also exhibit a low anthropogenic CO2 emission profile.
Abstract:
Biodegradable detergent compositions comprising enzymes and 1,3-propanediol are provided. The 1,3-propanediol in the composition is biologically derived and enhances the stability of the enzymes in the composition. The compositions also exhibit a low anthropogenic CO2 emission profile.
Abstract:
Biodegradable detergent compositions comprising 1,3-propanediol are provided, and the 1,3-propanediol in the composition is biologically derived. The compositions exhibit a lower anthropogenic CO2 emission profile. Also provided are biodegradable detergent compositions comprising an ester of 1,3-propanediol. In these compositions, the ester can have at least 3% biobased carbon.