Abstract:
A system for calibrating a sensor in a vehicle, such as a space capsule or other space borne apparatus, uses an expandable integrating sphere. A sensor in the vehicle measures the energy from an electromagnetic energy source within the integrating sphere through a calibration window. The expandable fluid impermeable integrating sphere expands when filled with a fluid, such that when filled with the fluid, its interior is viewable through the calibration window. The system includes a source of fluid to fill the integrating sphere and a fluid regulator coupled to the vehicle to determine when to supply the fluid to the integrating sphere to maintain an appropriate gas pressure level with the integrating sphere.
Abstract:
The present invention relates to an integrating sphere for measuring a light-emitting property of a light source, and more particularly, to an integrating sphere having a means for controlling temperature inside the integrating sphere. An integrating sphere for measuring an optical property of a light source according to the present invention has a substantially spherical hollow space formed therein; a first through-hole provided such that a wire for supplying electric power to the light source installed inside the hollow space of the integrating sphere passes therethrough; and a second through-hole provided such that temperature-controlled air is supplied into the hollow space of the integrating sphere therethrough. A light source support, which has one end disposed at the center of the hollow space of the integrating sphere and the other end fixed to an inner peripheral surface so as to hermetically seal the first through-hole of the integrating sphere, is installed within the hollow space. The integrating sphere includes an air supply tube fixed to an outer peripheral surface of the integrating sphere where the second through-hole is formed, so that air can be supplied to the interior of the integrating sphere through the second through-hole; an air supply means for supplying air to the air supply tube; a temperature control means for controlling the temperature of air being supplied from the air supply means and passing through the air supply tube; and a shielding plate installed to be spaced apart by a predetermined distance from the second through- hole.
Abstract:
A method and apparatus for providing an integrating sphere for use as a measuring device is described. More specifically, the integrating sphere includes a generally spherical shell and a liner disposed within said generally spherical shell, wherein the liner is composed of a sintered polymer. In one embodiment, the liner is made up of a pre-formed polytetrafluoroethylene (PTFE) shell.
Abstract:
A method and apparatus for providing an integrating sphere for use as a measuring device is described. More specifically, the integrating sphere includes a generally spherical shell and a liner disposed within said generally spherical shell, wherein the liner is composed of a sintered polymer. In one embodiment, the liner is made up of a pre-formed polytetrafluoroethylene (PTFE) shell.
Abstract:
The invention features devices and methods for collecting and measuring light from external light sources. In general, the devices of the invention feature a light diffusing element, e.g., as a component of a light collector, connected by a light conducting conduit, e.g., a fiber optic cable, to a light measuring device, e.g., a spectrometer. This light diffusing element allows, e.g., for substantially uniform light diffusion across its surface and thus accurate measurements, while permitting the total footprint of the device to remain relatively small and portable. This light diffusing element also allows flexibility in scaling of the device to permit use in a wide range of applications.
Abstract:
A stabilisation system for stabilising an output of a controllable light or laser source comprises a randomizer for randomizing light from the controllable light or laser source to generate a speckle pattern; a detector for detecting the speckle pattern to determine one or more properties of the light and/or changes in one or more properties of the light; and a controller for controlling the controllable light or laser source based on the determined one or more properties of the light and/or changes in one or more properties of the light.
Abstract:
A highly reflective coating painting product, particularly suitable as a coating for integrating spheres, comprises a diffusely reflective product such as, for example, barium sulphate, and an acrylic binder or glue, which are dispersed in a liquid vehicle, preferably constituted by a mixture of water and alcohol. The acrylic binder or glue is a product based on acrylic polymer or copolymer the quantity of which in the coating product is between about 1 % and 15 %, and preferably between 3 % and 4 %, by weight, relative to the reflective product. The coating product is applied to a surface in successive layers until a thickness of at least 0.5 mm is reached. The surface coated with the product is then subjected to heating, preferably at about 100 °C, for about 1 hour.
Abstract:
A quick attachment device for use in the repeated testing of diode light sources (30) includes a quick attachment module (10) having a fixed location with respect to a testing position (150) for the diodes (30), and a mounting assembly (20) on which each diode (30) is mounted during testing. The quick attachment module (10) includes a quick disconnect fastener and two locating pin (120a and 120b) for securing the mounting assembly (20) for testing, where the two locating pins (120a and 120b) have a locational transition fit connection with the mounting assembly (20). The mounting assembly (20) may further include a thermal-electric cooling device (260) for cooling the diode light sources (30) during testing.