Abstract:
The invention relates to a method and system of irradiating a liquid-carrying container for inspection, comprising rotating said container, its contents or both around a rotation axis and irradiating said container with an electromagnetic radiation beam, whereby the irradiated cross-section of said container, irradiated by said electromagnetic radiation beam, is less than the cross-section of said container. The present invention further relates to a method and system for inspecting a liquid carrying container for one or more test parameters of said container, the contents of said container, or both, comprising the steps of rotating said container, said contents or both around a rotation axis, irradiating said container with an electromagnetic radiation beam from a first direction along an irradiation centre plane substantially parallel to said rotation axis, capturing a representation of a section of said container from a second direction along a detection centre plane substantially parallel to said rotation axis, and processing said representation, characterized in that the irradiated cross-section of said container, irradiated by said electromagnetic radiation beam, is less than the cross-section of said container.
Abstract:
A method for measuring a like-color region of an object. The method includes defining a first region of a colorimetric image of the object, determining a statistical representation of the first region based on a color metric, and defining a second region of the colorimetric image such that the second region comprises at least a portion of the first region.
Abstract:
A turbidimeter for measuring a turbidity of a liquid sample in a sample cuvette includes a cuvette receiving device configured to position the sample cuvette in a defined cuvette position, a light source configured to generate a parallel light beam in the sample cuvette, an annular 45° collecting mirror configured to surround the sample cuvette, a scattering body arranged concentric to the annular 45° collecting mirror, a scattering light detector arranged to receive light scattered by the scattering body, and an annular 45° concentration mirror arranged coaxially to the annular 45° collecting mirror and optically opposite to the annular 45° collecting mirror. The annular 45° collecting mirror is arranged concentric to the light beam. The annular 45° concentration mirror is configured to surround the scattering body.
Abstract:
Conventional optical analysis tools containing an integrated computational element may have an operational profile that is too large for convenient use within confined locales. Optical analysis tools having a miniaturized operational profile can comprise: an electromagnetic radiation source that provides electromagnetic radiation to an optical train; and an optical computing device positioned within the optical train. The optical computing device comprises a planar array detector having at least two optical detection regions. At least one of the at least two optical detection regions has an integrated computational element disposed thereon. The planar array detector and the integrated computational element are in a fixed configuration with respect to one another.
Abstract:
A system for optically scanning a region comprising a sample of which a chemical composition is to be determined, comprising: a pulsed laser source for emitting a pulsed laser beam; a focusing device for adjusting the position of the waist of the laser beam along an optical path of the laser beam; a deflector for adjusting a propagation direction of the laser beam to a given direction; a controller for varying, via the beam deflector, the propagation direction of the pulsed laser beam according to a predefined beam path and varying, via the focusing device, the given position of the waist of the laser beam along the optical path; and a photodetector for detecting light emitted by a plasma created when a given one of laser pulses has an irradiance is greater than a breakdown threshold, the detected light being indicative of the chemical composition of the sample.
Abstract:
The present invention discloses a mail detection device and method. The device comprises a broad-band terahertz generator, a collimator, a beam splitter, a fixed reflector, a movable reflector, a wave buncher, a matrix detector, an acquisition card and an information processing module; wherein the information processing module is used for generating a terahertz image of a mail to be detected according to the electric signals sent by the acquisition card when the movable reflector is motionless; and when finding suspicious articles according to the terahertz image of a mail to be detected, the information processing module controls the movable reflector to move, and generates spectral information of the suspicious articles according to an electric signal sequence sent by the acquisition card during the movement of the movable reflector.
Abstract:
A surface plasmon fluorescence analysis device that has a chip holder, a light source, an angle adjustment unit, a light sensor, a filter holder, an excitation light cut filter, a scattered light transmission unit, a transmission adjustment unit, and a control unit. As seen in plan view, the area occupied by the scattered light transmission unit is arranged on the excitation light cut filter or on the filter holder and is smaller than the area of a fluorescence transmission region as seen in plan view.
Abstract:
The invention is a SPR sensor that comprises a multi-layered plasmonic structure on a substrate for sensing. The SPR sensor has an enhanced figure of merit and lower limit of detection (system noise divided by the sensitivity) by at least two orders of magnitude than prior art SPR sensors. The plasmonic structure of the invention comprises a Nanostructured Porous Metal Layer (NPML) and at least one of: (a) buried dielectric layer under the nano-porous metal layer; (b) a nano-dimensional high index layer on top of the metal layer; and (c) a molecular layer for bio-functionalization adjacent to an analyte layer. The invention also encompasses many embodiments of measuring systems that comprise the SPR sensors of the invention with improved signal to noise ratio.
Abstract:
The present invention relates to a system for conducting the identification and quantification of micro-organisms, e.g., bacteria in biological samples. More particularly, the invention relates to a system comprising a disposable cartridge and an optical cup or cuvette having a tapered surface; an optics system including an optical reader and a thermal controller; an optical analyzer; a cooling system; and an improved spectrometer. The system may utilize the disposable cartridge in the sample processor and the optical cup or cuvette in the optical analyzer.