Abstract:
Provided are an immunoassay method in which, by using a sensor chip on which a plurality of capture regions which capture a material to be detected by a first capturing body are arranged separated from each other, the material to be detected captured by the first capturing body is individually detected, wherein the plurality of capture regions are formed by using a different type of first capturing body depending on the type of a material to be detected to be captured, the method having: a detection processing order determination step of determining a detection processing order between the capture regions based on information about a detection processing order between the plurality of the capture regions; and a detection processing step of performing a detection processing for each of the capture regions according to the detection processing order between the plurality of the capture regions, and an immunoassay system using the method.
Abstract:
A surface plasmon resonance fluorescence analysis device has a chip holder for holding an analysis chip, a light source for irradiating excitation light, an angle adjustment unit for adjusting the angle of incidence of the excitation light in relation to the interface of a prism and metal film of the analysis chip, an excitation light reflection filter, a first optical sensor for detecting the fluorescence emitted from the analysis chip and transmitted through the excitation light reflection filter, a second optical sensor for detecting the plasmon scattered light emitted from the analysis chip and reflected by the excitation light reflection filter, and a control unit for controlling the angle adjustment unit. The control unit determines an enhancement angle on the basis of the plasmon scattered light detection results of the second optical sensor.
Abstract:
A detection device comprises a chip holder, a light source, a light-guide rod, a wavelength separation filter, and an optical sensor. Given the relationship between the angle of incidence and light intensity of fluorescence on a light reception surface of the optical sensor, the optical transmittance of the wavelength separation filter at the dominant wavelength of the rays of fluorescence incident on the light reception surface at a peak angle of incidence at which the light intensity is the highest is greater than the optical transmittance of the wavelength separation filter at the dominant wavelength of the rays of excitation light incident on the light reception surface at the peak angle of incidence and is higher than the optical transmittance of the wavelength separation filter at the dominant wavelength of the rays of fluorescence incident on the light reception surface at an angle of incidence of 0 DEG.
Abstract:
First, an analytical chip having a prism, a metal film that includes a trapping region having immobilized on the surface thereof a trapping element for trapping a substance to be analyzed, and a mark in which the scatter of emitted plasmon scattered light differs from the scatter of plasmon scattered light emitted from the surrounding region, is disposed in a chip holder. Next, the rear surface of the metal film is irradiated with excitation light, plasmon scattered light emitted from the proximity of the mark is detected, and, on the basis of the detected plasmon scattered light, location information for the trap region is obtained. Next, the portion of the rear surface of the metal film that corresponds to the trap region arranged at the detected location is irradiated with excitation light, and fluorescence emitted by a fluorescent substance is detected.
Abstract:
In a detection method, a first pressure within a pipette tip is measured when air is sucked into or expelled from the leading end of the pipette tip in a state where the leading end of the pipette tip and a reference part of a solid are separated. A second pressure within the pipette tip is measured when air is sucked into or expelled from the leading end of the pipette tip in a state where the leading end of the pipette tip and the reference part of the solid are closer than in the first step. After the first step and second step, the position of the leading end of the pipette tip in relation to the reference part is detected on the basis of the difference between the first pressure measured in the first step and the second pressure measured in the second step.
Abstract:
A surface plasmon fluorescence analysis device that has a chip holder, a light source, an angle adjustment unit, a light sensor, a filter holder, an excitation light cut filter, a scattered light transmission unit, a transmission adjustment unit, and a control unit. As seen in plan view, the area occupied by the scattered light transmission unit is arranged on the excitation light cut filter or on the filter holder and is smaller than the area of a fluorescence transmission region as seen in plan view.
Abstract:
In the present invention, excitation light is irradiated onto an analysis chip that has been placed in a chip holder, reflected light or transmitted light from the analysis chip is detected, and as a result the position information of the analysis chip is obtained. On the basis of this position information, the chip holder is moved by a conveyance stage and thereby moved to a measurement position. Excitation light is irradiated onto the analysis chip that is disposed at the measurement position, and fluorescence emitted from a fluorescent substance that marks the substance to be detected is detected.
Abstract:
This detection device has a holder, light irradiation unit, angle adjustment unit, light receiving sensor, light receiving optical system, optical filter, and a control unit. The light receiving optical system guides light from a detection chip to the light receiving sensor. The optical filter is disposed in the light receiving optical system, blocks a part of plasmon scattered light, and passes, out of the light emitted from the detection chip, a part of the plasmon scattered light, and fluorescence emitted from a fluorescent material. The light receiving sensor detects the fluorescent light, and the part of the plasmon scattered light, which have been emitted from the detection chip and passed the optical filter. On the basis of the detection results of the plasmon scattered light, the control unit controls the angle adjustment unit, and adjusts the incident angle of the excitation light to a predetermined incident angle.