Abstract:
An optical sensor apparatus includes a light receiving element configured to produce an output according to a light receiving state, and an optical element including a reflecting layer including a metal film, and being arranged such that at least some of incident light on the light receiving element is light that is reflected by the reflecting layer. The optical element further includes a corrosion resistant layer for suppressing corrosion of the reflecting layer, and the reflecting layer includes a surface covered by the corrosion resistant layer formed by vapor plating.
Abstract:
Methods and apparatus are provided for detecting one or more contaminant particles in an environment with an optical sensor. The sensor includes at least one optical waveguide in a resonant arrangement and a light source positioned in an environment in which the presence of a contaminant particle is sought to be determined. The at least one optical waveguide is of a diameter that an evanescent tail of the lightwave extending there through extends into the environment and is reactive to at least one contaminant particle in the surrounding environment. A detector is positioned to receive light indicative of the sharpness of the optical resonance lineshape of the optical resonator at a pre-selected optical wavelength. The detected information determines the specific contaminant particle in the environment and the concentration of the contaminant particle in the environment.
Abstract:
Devices, systems, and methods for enhancing Raman spectroscopy and hyper-Raman are disclosed. A molecular analysis device for performing Raman spectroscopy comprises a substrate and a laser source disposed on the substrate. The laser source may be configured for emanating a laser radiation, which may irradiate an analyte disposed on a Raman enhancement structure. The Raman enhancement structure may be disposed in a waveguide. The molecular analysis device also includes a wavelength demultiplexer and radiation sensors disposed on the substrate and configured for receiving a Raman scattered radiation, which may be generated by the irradiation of the analyte and Raman enhancement structure.
Abstract:
Chemical and biosensors are disclosed. An optical waveguide is used to conduct electromagnetic radiation by total internal reflection in parallel through a reference waveguide portion and at least one analyte waveguide portion. The electromagnetic radiation is then converged into an exit beam. The external surface of at least the analyte portion is covalently modified, or functionalized, relative to the reference portion. Resulting interaction of the functionalized surface with molecules comprising an analyte causes a phase change in the electromagnetic radiation passing through the analyte portion relative to the reference portion sufficient to generate a corresponding and measurable interference pattern in the exit beam. A waveguide surface is functionalized by exposure to a reagent, having molecules each comprising a nitrenogenic group and a functionalizing group, in the presence of energized charged particles such as electrons and ions, photons, or heat, which transform the nitrenogenic reagent to a nitrene intermediate. The resulting reaction causes the functionalizing groups to covalently bond to the surface. The functionalizing groups can then participate in downstream chemistry whereby any of a large variety of functional groups, including biological molecules, can be covalently bonded to the surface. Thus, the waveguide surface can be made selectively responsive to a wide variety of analytes, including cells and other biological structures.
Abstract:
Arrays of integrated analytical devices and their methods for production are provided. The arrays are useful in the analysis of highly multiplexed optical reactions in large numbers at high densities, including biochemical reactions, such as nucleic acid sequencing reactions. The devices allow the highly sensitive discrimination of optical signals using features such as spectra, amplitude, and time resolution, or combinations thereof. The devices include an integrated diffractive beam shaping element that provides for the spatial separation of light emitted from the optical reactions.
Abstract:
Die Erfindung betrifft ein mikrooptisches Element (10) mit einem Resonatorsubstrat (11), auf das mindestens ein Mikroresonator (12) aufgebracht ist, der in Form eines rotationssymmetrischen Körpers (14) ausgestaltet ist, wobei der mindestens eine Mikroresonator (12) mit einem lichtreflektierenden Spiegel (20) umgeben ist. Die Erfindung betrifft weiterhin ein mikrooptisches Array (40) mit mindestens einem Resonatorsubstrat (11), auf das mindestens zwei Arrayelemente aufgebracht sind, wobei jedes Arrayelement jeweils mindestens einen Mikroresonator (12, 12...') aufweist, der von einem lichtreflektierenden Spiegel (20, 20'..) umgeben ist. Die Erfindung betrifft schließlich ein optisches Sensorsystem (80), das mindestens ein mikrooptisches Element (10) oder mindestens ein mikrooptisches Array (40) aufweist. Mit dem optischen Sensorsystem (80) wird eine integrierte, portable Vorrichtung für einen robusten und hochempfindlichen Nachweis kleinster Molekülmengen bereitgestellt.
Abstract:
Détecteur de particules comprenant un substrat (10, 30, 40) en matériau semi-conducteur, dans lequel est formé au moins une cavité traversante (11, 31, 41 ), délimitée par une section d'entrée (110) et une section de sortie (111 ), sa section d'entrée étant destinée à être reliée à une source de flux d'air, ledit substrat supportant : - des moyens optiques comprenant au moins une source laser (12, 32, 42) et au moins un guide d'onde (13, 33, 43), relié à ladite au moins une source laser et débouchant à proximité de la section de sortie de ladite cavité et - des moyens photodétecteurs (14, 34, 44) situés à proximité de la section de sortie de ladite cavité et décalés par rapport à l'axe optique des moyens optiques.
Abstract:
Chemical and biosensors are disclosed. An optical waveguide (11) is used to conduct electromagnetic radiation by total internal reflection in parallel through a reference waveguide portion (12) and at least one analyte waveguide portion (14). The electromagnetic radiation is then converged into an exit beam. The external surface of at least the analyte portion is covalently modified, or functionalized, relative to the reference portion. Resulting interaction of the functionalized surface with molecules comprising an analyte causes a phase change in the electromagnetic radiation passing through the analyte portion relative to the reference portion sufficient to generate a corresponding and measurable interference pattern in the exit beam.
Abstract:
An apparatus useful in immunoassay of a fluid, light is directed to an optical sensor wherein the light is transmitted to a replaceable optical device that is responsive to index of refraction in a sensing region thereof that is exposed to the fluid. One portion of the light is transmitted via a compensation path that includes the sensing region to a first detector. Another portion of the light is transmitted via a sensing path that includes the sensing region to another detector. In one embodiment a rationing device receives an output from each detector and provides a signal responsive to the ratio of the outputs. The replaceable optical device typically comprises a pair of channel waveguides in directional coupling arrangement, or a pair of channel waveguides in an interferometer arrangement, or a ridge waveguide having a curved or serpentine path configured so that nonspecific sensing effects are compensated.
Abstract:
An apparatus for sensing particulate matter in a fluid includes a substrate; and an integrated circuit electrically connected to the substrate, the integrated circuit including a photodetector. The apparatus includes a filter assembly including a particle filter aligned with the photodetector, and a filter housing for the particle filter, the filter housing defining a flow path for fluid through the particle filter. The apparatus includes a light source electrically connected to the substrate and positioned to illuminate the particle filter.