Abstract:
A surface scanning wafer inspection system with independently adjustable scan pitch and associated methods of operation are presented. The scan pitch may be adjusted independently from an illumination area on the surface of a wafer. In some embodiments, scan pitch is adjusted while the illumination area remains constant. For example, defect sensitivity is adjusted by adjusting the rate of translation of a wafer relative to the rate of rotation of the wafer without additional optical adjustments. In some examples, the scan pitch is adjusted to achieve a desired defect sensitivity over an entire wafer. In other examples, the scan pitch is adjusted during wafer inspection to optimize defect sensitivity and throughput. In other examples, the scan pitch is adjusted to maximize defect sensitivity within the damage limit of a wafer under inspection.
Abstract:
A terahertz continuous wave system in accordance with the inventive concept may include a terahertz wave generator generating a terahertz continuous wave; a non-destructive detector measuring a change of the terahertz continuous wave by emitting the generated terahertz continuous wave to a sample and controlling a focal point of the emitted terahertz continuous wave while two-dimensionally moving the sample at predetermined intervals; and a three-dimensional image processor obtaining a three-dimensional image using two-dimensional images corresponding to the measured terahertz continuous wave.
Abstract:
While an illumination optical system 2 is irradiating the surface of a contaminated standard wafer 110 with illumination light, this illumination light is scanned over the surface of the contaminated standard wafer 110, then detectors 31 to 34 of a detection optical system 3 each detect the light scattered from the surface of the contaminated standard wafer 110, next a predefined reference value in addition to detection results on the scattered light is used to calculate a compensation parameter “Comp” for detection sensitivity correction of photomultiplier tubes 331 to 334 of the detectors 31 to 34, and the compensation parameter “Comp” is separated into a time-varying deterioration parameter “P”, an optical characteristics parameter “Opt”, and a sensor characteristics parameter “Lr”, and correspondingly managed.This makes it easy to calibrate the detection sensitivity.
Abstract:
The present invention relates generally to the field of biochemical laboratory instrumentation for different applications of measuring properties of samples on e.g. microtitration plates and corresponding sample supports. The object of the invention is achieved by providing an optical measurement instrumentation wherein a sample (281-285) is activated (212AS, 218AS) and the emission is detected (291, 292), wherein between the activation and detection phases of measuring the sample, a shift is made in the relative position between the sample and means (218) directing the activation radiation to the sample as well as in the relative position between the sample and the means (293) receiving the emission radiation from the sample. This can be implemented e.g. by moving (299) the sample assay plate and/or a measuring head between the activation and emission phases of a sample. The invention allows a simultaneous activation of a first sample and detecting emission from a second sample thus enhancing efficiency of the measurement.
Abstract:
The present invention relates generally to the field of biochemical laboratory instrumentation for different applications of measuring properties of samples on microtitration plates and corresponding sample supports. An optical measurement instrumentation is provided, a sample is activated and the emission is detected, wherein between the activation and detection phases of measuring the sample, a shift is made in the relative position between the sample and elements directing the activation radiation to the sample as well as in the relative position between the sample and the elements receiving the emission radiation from the sample. This can be implemented e.g. by moving the sample assay plate and/or a measuring head between the activation and emission phases of a sample. The invention allows a simultaneous activation of a first sample and detecting emission from a second sample thus enhancing efficiency of the measurement.
Abstract:
Methods for determining corrosion products on a substrate are disclosed. In one embodiment, a non-destructive method for determining an amount of corrosion product on a metallic substrate includes non-destructively determining a value Ia of infrared energy absorbed in a corrosion product on a metallic substrate; and correlating the value Ia of the infrared energy absorbed to an amount of the corrosion product.
Abstract:
A non-destructive method is provided for determining amount and distribution of a corrosion product on a metallic substrate. A value of infrared energy reflected from the metallic substrate without corrosion is determined. A value of infrared energy reflected from the metallic substrate with the corrosion product is determined. A value of infrared energy absorbed in the corrosion product is determined, and the value of the infrared energy absorbed in the corrosion product is correlated to an amount of the corrosion product.
Abstract:
A detection and repair system includes an optical microscope, an image-retrieving device, an emission detector, a data controller, and a laser beam generator. When detecting the location of a defect, the system charges a detected region of an organic electroluminescent device with a negative bias or low forward bias before the device is lighted on. Then, the emission detector detects the locations of defects, which generate emission such as photons, thermal or IR emission, in an enlarged image. The laser beam generator generates a laser beam, which is used to isolate one of the defects. Furthermore, this invention also discloses a method for detecting and repairing an organic electroluminescent device.
Abstract:
A double-sided optical inspection system is presented which may detect and classify particles, pits and scratches on thin film disks or wafers in a single scan of the surface. In one embodiment, the invention uses a pair of orthogonally oriented laser beams, one in the radial and one in the circumferential direction on both surfaces of the wafer or thin film disk. The scattered light from radial and circumferential beams is separated via their polarization or by the use of a dichroic mirror together with two different laser wavelengths.
Abstract:
A scanning system includes a cable take-up mechanism that uses a series of pulleys that determine the bend diameters of a scanning system. The mechanism is particularly suited for a spectrometric, e.g., infrared, scanning system where moving scanner or sensor head essentially houses only the optical elements while essentially of all the other electronic and optical components associated with the measurement are housed in an easily accessible compartment that is remote from the moving scanner head. Light is transmitted through optical fiber cables. The cable take-up mechanism maintains the fiber optic cable at essentially constant total bend length and bend diameter thereby minimizing any dynamic changes to spectral bend losses as the optical head is scanned. The light weight construction of the sensor head further reduces vibrations associated with the moving scanner head.