Abstract:
A detector has a sensor responsive to a first wavelength, a sensor responsive to a second wavelength, and a sensor for collecting reference readings. A gas sample is analysed to obtain readings corresponding to the first wavelength, the second wavelength and a reference. A first absorption figure is calculated using the first reading and the reference reading, and a second absorption figure using the second reading and the reference reading. A lineariser function is applied to the first and second absorption figures to calculate first and second concentration figures. The sensor for each wavelength is calibrated for detecting the first gas such that the data collected at each wavelength gives the same reading when only the first gas is present. The ratio of the first concentration figure to the second concentration figure is used to identify whether only the first gas is present.
Abstract:
A method for identifying the impact on data, such as experimental data, of interfering effects, such as unwanted auto-fluorescence, fluorescence quenching, and fluorescent-sample deterioration, whether or not the data fulfill certain criteria with respect to a threshold indicative of the interfering effects.
Abstract:
A method of determining a concentration of a gas in a sample and/or the composition of a gas using a spectrometer comprises the transmitting of radiation whose wavelength substantially continuously runs through a wavelength range, wherein the continuous running through of the wavelength range is overlaid by a wavelength modulation; the measuring of an absorption signal from the absorption of the radiation by the gas as a function of the wavelength of the radiation; the converting of the absorption signal into a first and a second derivative signal; the deriving of a first measured gas concentration value from the first derivative signal and of a second measured gas concentration value from the second derivative signal; and the determining of the concentration and/or the composition of the gas from at least the first measured gas concentration value, wherein the wavelength modulation is adapted in response to a change of a state variable of the gas such that a ratio between the first measured gas concentration value and the second measured gas concentration value is kept substantially constant.
Abstract:
A method and apparatus are described that permit an analyte concentration to be estimated from a measurement in the presence of compounds that interfere with the measurement. The method reduces the error in the analyte concentration in the presence of interferents. The method includes the use of a set of measurements obtained for a large population having a range of known analyte and interfering compound concentrations. From a sample measurement, which may or may not be one of the population, likely present interferents are identified, and a calibration vector is calculated.
Abstract:
A concentration measuring device for determining a concentration of gas or particles in a measurement volume includes at least one housing having an opening for communication with the measurement volume, a light source for transmitting measurement light through the housing into the measurement volume, a light receiver for receiving the measurement light after its passage through the measurement volume and an evaluation unit which is designed for determining the concentration of gas or particles from the measurement light received at the light receiver. In accordance with the invention at least one body of solid material is arranged in the at least one housing such that the measurement light path largely passes through the at least one solid body within the housing, with the portion of the measurement light path within the at least one housing not passing through the at least one solid body having a specified total length.
Abstract:
A differential absorption spectrum for a reactive gas in a gas mixture can be generated for sample absorption data by subtracting background absorption data set from the sample absorption data. The background absorption data can be characteristic of absorption characteristics of the background composition in a laser light scan range that includes a target wavelength. The differential absorption spectrum can be converted to a measured concentration of the reactive gas using calibration data. A determination can be made whether the background composition has substantially changed relative to the background absorption data, and new background absorption data can be used if the background composition has substantially changed. Related systems, apparatus, methods, and/or articles are also described.
Abstract:
A concentration measuring device for determining a concentration of gas or particles in a measurement volume includes at least one housing having an opening for communication with the measurement volume, a light source for transmitting measurement light through the housing into the measurement volume, a light receiver for receiving the measurement light after its passage through the measurement volume and an evaluation unit which is designed for determining the concentration of gas or particles from the measurement light received at the light receiver. In accordance with the invention at least one body of solid material is arranged in the at least one housing such that the measurement light path largely passes through the at least one solid body within the housing, with the portion of the measurement light path within the at least one housing not passing through the at least one solid body having a specified total length.
Abstract:
A differential absorption spectrum for a reactive gas in a gas mixture can be generated for sample absorption data by subtracting background absorption data set from the sample absorption data. The background absorption data can be characteristic of absorption characteristics of the background composition in a laser light scan range that includes a target wavelength. The differential absorption spectrum can be converted to a measured concentration of the reactive gas using calibration data. A determination can be made whether the background composition has substantially changed relative to the background absorption data, and new background absorption data can be used if the background composition has substantially changed. Related systems, apparatus, methods, and/or articles are also described.
Abstract:
The invention provides a method for identifying the impacts of interfering effects on experimental data. In particular, a method is described for identifying the impacts of unwanted auto-fluorescence, fluorescence quenching, and deterioration of a fluorescent sample under study on the collected experimental data. The data are analyzed whether or not said data fulfill certain criteria with respect to a threshold which is indicative for said interfering effect.
Abstract:
A differential absorption spectrum for a reactive gas in a gas mixture can be generated for sample absorption data by subtracting background absorption data set from the sample absorption data. The background absorption data can be characteristic of absorption characteristics of the background composition in a laser light scan range that includes a target wavelength. The differential absorption spectrum can be converted to a measured concentration of the reactive gas using calibration data. A determination can be made whether the background composition has substantially changed relative to the background absorption data, and new background absorption data can be used if the background composition has substantially changed. Related systems, apparatus, methods, and/or articles are also described.