Abstract:
A foil-type switching element comprises a first carrier foil and a second carrier foil arranged at a certain distance from each other by means of a spacer, said spacer comprising at least one recess defining an active area of the switching element. At least two electrodes are arranged in the active area of the switching element between said first and second carrier foils in such a way that, in response to a pressure acting on the active area of the switching element, the first and second carrier foils are pressed together against the reaction force of the elastic carrier foils and an electrical contact is established between the at least two electrodes. According to the invention, at least one of said carrier foils comprises a multi-layered configuration with at least two layers of different materials.
Abstract:
A cluster key arrangement may be mechanically configured or electronically configured. The cluster key arrangement may include twelve cluster keys configured in an arrangement of three columns by four rows, such as conventionally found on standard telephones. The cluster key arrangement may also be configured for use or cellular/mobile telephones, television remote controls, other handheld data entry devices, automotive controls, desktop/wall-mounted/cordless telephones, combination telephone recorders, Personal Digital Assistants, and other electronic devices. The mechanically or electronically configured cluster, keys provide a user with the ability to select one of a plurality of key elements representing numbers, letters, symbols, functions, etc., in a mutually exclusive manner.
Abstract:
The present disclosure describes pressure sensitive keys with a single-sided direct conduction sensor that includes a sensor substrate, a conductive layer formed on an underside of a contact layer, and a force sensing layer formed on the underside of the contact layer substantially surrounding the conductive layer. The contact layer, the conductive layer, and the force sensing layer are configured to cooperatively flex in response to an application of pressure to contact the sensor substrate.
Abstract:
Flexible hinge and removable attachment techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.
Abstract:
Techniques for mobile device power state are described. In one or more implementations, a mobile device includes a computing device that is flexibly coupled to an input device via a flexible hinge. Accordingly, the mobile device can operate in a variety of different power states based on a positional orientation of the computing device to an associated input device. In one or more implementations, an application that resides on a computing device can operate in different application states based on a positional orientation of the computing device to an associated input device. In one or more implementations, techniques discussed herein can differentiate between vibrations caused by touch input to a touch functionality, and other types of vibrations. Based on this differentiation, techniques can determine whether to transition between device power states.
Abstract:
Key formation techniques are described. In one or more implementations, an input device includes a key assembly including a plurality of keys that are usable to initiate respective inputs for a computing device, a connection portion configured to be removably connected to the computing device physically and communicatively to communicate signals generated by the plurality of keys to the computing device, and an outer layer that is configured to cover the plurality of keys of the key assembly, the outer layer having a plurality of areas that are embossed thereon that indicate one or more borders of respective said keys.
Abstract:
A pressure-actuatable switching device for sensing a compressive force acting thereon comprises a first sheet element and a second sheet element, each one of the first and second sheet elements having a side facing towards the other sheet element and a side facing away from the other sheet element, an intrinsically pressure-sensitive organic layer arranged between the first and second sheet elements and an evaluation circuit. The intrinsically pressure-sensitive organic layer is electrically insulating when subjected to pressure not exceeding a certain pressure threshold and electrically conducting when subjected to pressure exceeding the pressure threshold. The evaluation circuit is electrically connected to the intrinsically pressure-sensitive organic layer in such a way that it can evaluate whether the intrinsically pressure-sensitive organic layer is electrically insulating or electrically conductive. The first sheet element comprises, on the side facing towards the second sheet element, at least one projection of higher rigidity than the material of the pressure-sensitive organic layer, so that a compressing force acting on the pressure-actuatable switching device is concentrated while being transmitted to the intrinsically pressure-sensitive organic layer at least preponderantly through the at least one projection.
Abstract:
An electronic device has a tactile joystick with a force sensing resistive layer (120) in an XY plane; a flexible mould (115) surrounding at least one portion of the force sensing resistive layer (120); a plunger (190) coupled to the flexible mould (115), mounted orthogonal to the XY plane; and, a tactile dome (110) disposed adjacent to one of a top surface (135) and a bottom surface (133) of the plunger (190). Further, a method of implementing a function using a tactile device includes actuating a tactile dome by applying a force (605); determining a distribution of the force in a plurality of sections in a force sensing resistive layer (610); and implementing the function (630, 635).