Abstract:
The invention relates to the field of production of barium-scandate dispenser cathodes or other barium-scandate materials. A target (66) containing a mixture of BaO, CaO, Al2O3 and Sc2O3 tends to be more stable, the higher the scandia (scandium oxide) content is. However, an increased scandia content results in a reduced emission capability. A destabilizing effect of BaO and CaO reactions is counteracted by the more inert Sc2O3 and also Al2O3 components, as not only an increased scandia content stabilizes the material but also an increased alumina (aluminum oxide) content improves the stability.
Abstract:
The invention relates to a light-emitting device comprising an electrode with a ceramic oxide material, which is brought in to contact with a reducing agent or a precursor thereof. The reducing agent serves to bind the released oxygen and to control the performance of the light-emitting device.
Abstract:
A vacuum tube, in particular a cathode ray tube, equipped with at least one oxide cathode comprising a cathode carrier with a cathode base of a cathode metal and a cathode body with a cathode coating of an electron-emitting material that comprises an alkaline earth oxide, selected from the group formed by the oxides of calcium, strontium and 5 barium, and a sintering inhibitor.
Abstract:
Cathode comprising a substrate (2) supporting a cathode emissive coating, comprising what is called an emissive central zone (12) and what is called a nonemissive peripheral zone (11); according to the invention: the average density and the emissive zone (12) is greater than that in said nonemissive zone (11), the average thickness in the emissive zone (12) is less than that in the nonemissive zone (11). In this way it is possible to significantly limit the drift in cut-off voltage, while still maintaining good maximum emission performance in DC mode and in pulse mode.
Abstract:
The present invention realizes a cathode ray tube which holds the stable electron emission characteristics when the cathode ray tube is operated in a high current density state for a long time. An electron emissive material layer which constitutes a cathode is formed by dispersing a scandium compound having an average particle size of equal to or less than 1.2 nullm to an oxide layer formed of alkaline earth metal (barium, strontium, calcium) oxide, wherein an atomic weight ratio of scandium with respect to strontium is set to a value within a range of 0.003 to 0.3. A base metal includes a reducing metal containing nickel as a main component and a plate thickness of a surface of a top portion of the base metal which comes into contact with the electron emissive layer is set to a value equal to or more than 0.17 mm.
Abstract:
A nickel alloy for the manufacture of cathodes for cathode-ray tubes, comprises magnesium and aluminium in proportions chosen so as to allow good adhesion of an emissive oxide layer to the basis metal cap consisting of the alloy.
Abstract:
A cathode ray tube provided with at least one oxide cathode comprising a cathode carrier with a cathode base of a cathode metal and a cathode coating of an electron-emitting material containing a particle-particle composite material of oxide particles of an alkaline earth oxide selected from the group formed by the oxides of calcium, strontium and barium, and oxide particles having a first grain size distribution of an oxide selected from the group formed by the oxides of scandium, yttrium and the lanthanoids, and oxide particles having a second grain size distribution of an oxide selected from the group formed by the oxides of scandium, yttrium and the lanthanoids. The invention also relates to an oxide cathode.
Abstract:
The present invention relates to a cathode for an electron gun for increasing its life cycle under a high current density load by ensuring a diffusion path of reducing component served for generating free radical barium. The present invention discloses a cathode for an electron gun comprising a base metal composed of nickel and at least one kind of reducing component, an upper metal layer formed by spraying powder to the surface of the base metal, implanting Ni thereto, or grinding the surface thereof and heating it, and an electron emitting layer containing alkaline earth metal oxide including at least barium on the upper metal layer.