Abstract:
Methods are provided to identify spatially and spectrally multiplexed probes in a biological environment. Such probes are identified by the ordering and color of fluorophores of the probes. The devices and methods provided facilitate determination of the locations and colors of such fluorophores, such that a probe can be identified. In some embodiments, probes are identified by applying light from a target environment to a spatial light modulator that can be used to control the direction and magnitude of chromatic dispersion of the detected light; multiple images of the target, corresponding to multiple different spatial light modulator settings, can be deconvolved and used to determine the colors and locations of fluorophores. In some embodiments, light from a region of the target can be simultaneously imaged spatially and spectrally. Correlations between the spatial and spectral images over time can be used to determine the color of fluorophores in the target.
Abstract:
To provide a microspectroscope that can perform a wide range mapping measurement with high sensitivity, at high speed, and with high wavelength resolution.The Raman spectroscope comprises: a unit for linearly irradiating excitation light; a movable stage for a sample; an objective lens for focusing Raman light from the linear irradiation region; an incident slit provided at the imaging position of Raman light; a spectrometer for diffusing the passing light; a CCD detector for detecting Raman spectral image; and a control device for controlling the mapping measurement by synchronizing the movable stage and the CCD detector. The control device controls the movable stage to move in the direction orthogonal to the longitudinal direction of the linear irradiation light and obtain one average spectrum. At the same time, the control device is configured to perform the cycle of the CCD detector while the stage is moving to obtain one average spectrum of the moving region of the linear irradiation region in one light detection cycle.
Abstract:
Methods and designs for providing reduced sensitivity to mirror tilt in Fourier transform spectrometers are disclosed. According to an embodiment for two-directional tilt compensation, the FT spectrometer can include a beam splitter positioned to receive an incoming beam from a light source and split the incoming beam into a first sub-beam and a second sub-beam, a corner-cube retroreflector positioned to receive the first sub-beam from the beam splitter, a dual reflective mirror positioned to receive the first sub-beam from the corner-cube retroreflector at one surface and the second sub-beam at the other surface. An optical path delay can be created using a set of mirrors, tilting the beam splitter and/or a glass cube.
Abstract:
An analysis system, tool, and method for performing downhole fluid analysis, such as within a wellbore. The analysis system, tool, and method provide for a tool including a spectroscope for use in downhole fluid analysis which utilizes an adaptive optical element such as a Micro Mirror Array (MMA) and two distinct light channels and detectors to provide real-time scaling or normalization.
Abstract:
A spectroscope designed to utilize an adaptive optical element such as a micro mirror array (MMA) and two distinct light channels and detectors. The devices can provide for real-time and near real-time scaling and normalization of signals.
Abstract:
A system and method for identifying explosive or other target materials includes the steps of irradiating a first location and a second location spaced apart from the first location from a sample suspected of including explosives with ultraviolet, visible or infrared light, measuring reflected light emanated from the first sample location (R1) and reflected light emanated from the second sample location (R2), and calculating a normalized difference in reflectivity (ΔR/ R), wherein R=(R1+R2)/2 is an average reflectivity. A differential reflection spectrum (DRS) is then generated for the sample where ΔR=R2−R1 is the difference of the reflectivities of the first and the second sample location. One or more explosives if present are identified in the sample based on comparing the DRS for said sample to at least one reference DRS.
Abstract translation:用于识别爆炸物或其他目标材料的系统和方法包括以下步骤:将与第一位置隔开的第一位置和与怀疑包括具有紫外线,可见光或红外光的爆炸物的样品的第二位置照射,测量从 第一采样位置(R 1> 1)和从第二采样位置(R 2> 2发出)的反射光,并计算归一化反射率差(ΔR/ O OYYLE =“ 其中 R =(R 1 + R 2/2)/ 2是平均反射率。 然后为样品产生差分反射光谱(DRS),其中ΔR= R 2 -R 1 1是第一和第二样品位置的反射率的差。 基于将所述样品的DRS与至少一个参考DRS进行比较,在样品中鉴定存在的一种或多种爆炸物。
Abstract:
Miniaturized spectrometer in the form of a probe for determining ingredients of a gaseous or liquid fluid with a light source and a spectrometer, at least one measurement beam, and at least one reference beam. Light from the light source is optionally fanned out and focused, by at least one optical lens, in an essentially parallel beam. At least one measurement beam is passed through a light transparent window from the probe into the fluid being investigated and through an additional light transparent window back in to the probe, and at least one reference beam is guided in the probe interior. A collecting optics device, comprising at least one lens, diverts the beams to the impingement point of the light guide or the inlet of the spectrometer, and a beam selector in the area of the collecting optics device passes through one of the partial beams and interrupts all the others.
Abstract:
At the time of analytical measurement of a sample by the fluorescence measuring device or the phosphorescence measuring device, both the optical path of exciting light emitted from the light source to the sample and the optical path of fluorescence or phosphorescence emitted from the sample to the detection unit are shut off. Both are shut off by one chopper.
Abstract:
A double-beam spectrophotometer of the invention is provided with a sector mirror used at a luminous flux separating portion or at a luminous flux combining portion, and a DC brushless motor is used for actuating the sector mirror to rotate. Since the DC brushless motor is used, the sector mirror can be rotated at high speed with few noise. Also, the double-beam spectrophotometer can measure the change in the short period of time.
Abstract:
A dual beam spectophotometer is described in which a beamsplitter is at least partially surrounded by a chopper, the combination of which provide sample and reference beams. An oscillating grating produces a monochromatic light beam scans a selected spectral range of wavelengths. The movement of a second chopper and of the oscillating grating is controlled to alternately pass sample and reference spectrums for detection by a detector and to block all radiation. Detected signals are processed for storage by suitable electronics and a computer. The electronics also control the motion of the oscillating grating and chopper. A set of beamsplitters with distinctly different sample-to-reference beam ratios are provided to add versatility to the spectrophotometer.