Abstract:
A full coverage fluidic oscillator (2) includes a fluidic circuit member preferably having an oscillation inducing internal chamber, at least one inlet (8) or source of fluid under pressure, at least a pair of output nozzles (14, 16) connected to the source of fluid for projecting at least first and second impinging fluid jets into free space, where the first and second impinging jets collide or impinge upon one another at a selected jet angle to generate a substantially omni-directional sheet jet having selected thickness. The first and second jets are aimed at a pre-selected intersection point in free space where impingement is to occur. The sheet jet's thickness Δy is determined by the time-varying path or oscillation of each of the first and second impinging jets. The first and second impinging jets can be made to oscillate or pulsate by use of vortex generating amplifier structures (68, 70, 72, 149) within the internal chamber's fluid flow paths.
Abstract:
Control of temperature of air efflux from an air outlet (13) is by control of the oscillation of a fluidic oscillator. Directionality of efflux is by control of nibs (14L, 14R) at the outlet (13).
Abstract:
A gas burner comprising a gas manifold feeding an array of fluidic oscillators (49). Each fluidic oscillator has a power nozzle (42) connected to the gas manifold and an outlet for issuing a sweeping jet of gas to ambient. Each fluidic oscillator is spaced a predetermined distance from its neighboring fluidic oscillators and a baffle plate (30) controls air flow to the sweeping jet of gas from each fluidic oscillator.
Abstract:
An air discharge nozzle and method for vehicles having a grill (20) which has a high degree of visual opacity to enhance design aesthetics, low impedance to air flow so that the face velocity remains high, and which does not significantly affect directionality of the air as imparted to the air stream by an upstream control mechanism. The grill (20) is comprised of a monolayer of polygonal cells in an array of cells. The upstream directionality control mechanism includes, in a preferred embodiment, an open intruder frame (30) having converging walls so that the cross-sectional area of the total shadow area of the frame projected on a plane normal to the axial center is essentially constant.
Abstract:
An air distribution system, particularly for automobiles, in which the depth of the unit is relatively short and in which control over the direction of air flow can be achieved by movement of an element in a plane orthogonal to the direction of air flow. A main air flow outlet is formed in a wall member and a parallel flow path is formed adjacent the outlet and has diverging walls which are relatively short so that there is no wall attachment or coanda effects per se. Flow of fluid through the adjacent parallel flow path or passageway exits through an opening that directs the air in a direction generally parallel to the short wall direction of the adjacent flow path. By controlling the entry of air into the parallel flow path, the main air flow vector is deflected and the direction of flow is thereby controlled. The deflection is greater when an obstacle slightly intrudes the side of the outlet opposite the parallel flow path. With a rectangular outlet opening, four adjacent parallel paths with short, straight or curved walls and adjacent parallel passages and obstacle intruders, the flow can be controlled in four directions or can be caused to diffuse generally in a forward direction. The element for control is basically a plate element movable in the plane transverse to the direction of the main air flow so that relatively short depth is required for installation of the device in an automobile system. By adding a control flap, the angular sweep can be greatly enlarged. By adding fixed control louvers, the maximum angles of directivity can be increased. The control plate can be positioned by a solenoid or driven by a motor to cause oscillatory sweep of the air issuing into the ambient.
Abstract:
A fluid dispersal device utilizes the Karman vortex street phenomenon to cyclically oscillate a fluid stream before issuing the stream in a desired flow pattern. A chamber has an inlet and outlet with an obstacle or island disposed therebetween to establish the vortex street. The vortex street causes the stream to be cyclically swept transversely of its flow direction in a manner largely determined by the size and shape of the obstacle relative to the inlet and outlet, the spacing between the obstacle and the outlet, the outlet area, and the Reynolds number of the stream. depending on these factors, the flow pattern of the stream issued from the outlet may be either: a swept jet, residing wholly in the plane of the device and which breaks up into droplets solely as a result of the cyclic sweeping, the resulting spray pattern forming a line when impinging on a target; or a swept sheet, the sheet being normal to the plane of the device and being swept in the plane of the device, the resulting pattern containing smaller droplets than the swept jet pattern and covering a two-dimensional area when impinging upon a target. A particular feature of the device is that it is moulded in one single piece from synthetic plastics material, the obstacle or island being an integral part of the single-piece moulding.
Abstract:
17 vide partiel produit dans le passage d'admission d'une chambre à tourbillon est utilisé pour déplacer le liquide d'un compartiment à un autre afin de maintenir le niveau de liquide dans au moins l'un des compartiments en deçà d'un niveau prédéterminé du liquide dans l'autre compartiment. Dans un mode de réalisation, l'unité de tourbillon (14) ou un autre organe d'aspiration développe un vide partiel à la hauteur maximale d'un tube de syphon (8) s'étendant entre les deux chambres, le vide aspirant le fluide des deux ou au moins de l'une des deux chambres vers le sommet du tube (8) amorçant ainsi l'effet de syphon. Une pompe de mines (6) possédant une pression négative insuffisante pour faire monter le liquide à la hauteur maximale du tube de syphon (8) est utilisée pour amener le liquide à une charge et, de concert avec l'unité de tourbillon (14), pour établir le vide partiel requis par l'amorçage de l'effet de syphon. L'unité de tourbillon (50) peut également être logée dans le tube de syphon (52, 54) et peut être utilisée comme pompe pour amener le liquide d'un compartiment seulement à un autre ou, dans un autre mode de réalisation, comme syphon pour déplacer le liquide dans les deux directions pour maintenir les niveaux du liquide dans les deux récipients à une différence de hauteur prédéterminée l'un par rapport à l'autre.
Abstract:
Une buse a dessin double comprend un oscillateur liquide du type qui emploie un obstacle ou une structure (27) dans le cheminement de l'ecoulement du liquide pour produire un cheminement tourbillonnaire en aval de l'obstacle. Un diviseur d'ecoulement (28, 29) est dispose en aval de l'ecoulement et suffisamment pres de l'obstacle pour empecher l'ecoulement autour de celui-ci de se re-combiner avant d'arriver au diviseur d'ecoulement, apres quoi des tourbillons liquides sont alternativement emis de chaque cote du diviseur. Le liquide tournoyant se brise en deux dessins de gouttelettes, les dessins etant diriges vers des zones espacees respectives.