Abstract:
A Transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires which may be embedded in a matrix. The conductive layer is optically transparent and flexible. It can be coated or laminated onto a variety of substrates, including flexible and rigid substrates.
Abstract:
A Transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires which may be embedded in a matrix and one more corrosion inhibitors. The conductive layer is optically transparent and flexible. It can be coated or laminated onto a variety of substrates, including flexible and rigid substrates.
Abstract:
[Means of overcoming the problem] Method of manufacturing a transparent electrically conductive substrate having an application process whereby a wet layer is formed by applying onto a substrate film a coating liquid comprising metallic nanowires dispersed in a solvent, and a drying process whereby the solvent contained in the abovementioned wet layer is removed by drying, characterised in that the abovementioned drying process includes a process whereby the orientation of the abovementioned metallic nanowires is altered by introducing a forced draft facing towards the substrate from a direction that is different from the longitudinal direction of the substrate film.
Abstract:
The present disclosure relates to optical stacks having nanostructure-based transparent conductive films and low diffuse reflection. Also described are display devices that incorporate the optical stacks.
Abstract:
Described herein are ink compositions suitable for forming conductive films by printing, in particular, by gravure, flexographic, and reverse offset printing.
Abstract:
The present disclosure relates to modifications to nanostructure based transparent conductors to achieve increased haze/light-scattering with different and tunable degrees of scattering, different materials, and different microstructures and nanostructures.
Abstract:
A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires which may be embedded in a matrix. The conductive layer is optically transparent and flexible. It can be coated or laminated onto a variety of substrates, including flexible and rigid substrates.
Abstract:
A Transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires which may be embedded in a matrix and one more corrosion inhibitors. The conductive layer is optically transparent and flexible. It can be coated or laminated onto a variety of substrates, including flexible and rigid substrates.
Abstract:
A Transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires which may be embedded in a matrix and one more corrosion inhibitors. The conductive layer is optically transparent and flexible. It can be coated or laminated onto a variety of substrates, including flexible and rigid substrates.
Abstract:
A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires which may be embedded in a matrix. The conductive layer is optically transparent and flexible. It can be coated or laminated onto a variety of substrates, including flexible and rigid substrates.