Abstract:
A first embodiment (Figs. 29A-29H) comprises a multilayer electrode (2906) for a panel display device and a mehod for forming a nultilayer electrode (2906) for a flat panel display device. The multilayer electrode (2096) is formed by depositing a metal alloy layer (2902). After the deposition of the metal alloy layer (2902), a protective layer (2904) is deposited above the metal alloy layer (2902) to form a multilayer stack (2906). The multilayer stack (2906) is subjected to a cleansing process to remove contaminants. Subsequently, the multilayer stack (2906) is etched to form the multilayer electrode (2906) for the flat panel display device. Another embodiment (Figs. 30-311) comprises a method of forming a multilayer stack (3106) is formed by depositing a first metal alloy layer (3102) above the substrate (3100). After the deposition of te metal alloy layer (3102), a barrier layer (3103) is formed above the first metal alloy layer (3102). The barrier layer (3103) is adapted to prevent the formation of an intermetallic compound within the first metal alloy layer (3102). Subsequently, a second metal alloy layer (3104) is deposited above the barrier layer (3103). The barrier layer (3103) prevents the formation of the intermetallic compound within the second metal alloy layer (3104).
Abstract:
Scattered or/and transmitted light is employed to determine characteristics, including dimensional information, of an object (60) such as part (10) of a flat-panel display. The dimensional information includes the average diameter of openings (62) in the object, the average density of the openings, and the average thickness of a layer (64) of the object. Light-diffraction patterns are produced to determine characteristics, such as abnormalities (146 and 148), of crossing lines (140 and 142) in such an object.
Abstract:
A display (50) with enhanced image contrast contains an image-producing component (60) and a set of shutter strips (80). The image-producing component, typically a flat-panel device, has multiple imaging lines that provide light to produce an image. Each shutter strip is situated in front of one or more associated imaging lines. By appropriately switching the shutter strips between light-absorptive and light-transmissive states, the image contrast is enhanced. The shutter strips are typically implemented with a liquid-crystal display structure. The switching of the shutter strips is typically performed with a control component (52/76) which utilizes light to control the shutter switching and which is synchronized to signals (90 or/and 100) that control the imaging lines.
Abstract:
A field emission display (700) having an improved operational life. In one embodiment, the field emission display (700) comprises a plurality of row lines (230), a plurality of column lines (250), and a plurality of electron emissive elements (40) disposed at intersections of the plurality of row lines (230) and column lines (250), a column driver circuit (740) and a row driver circuit (720). The column driver circuit (740) is coupled to drive column voltage signals over the plurality of column lines (250); and the row driver circuit (720) is coupled to activate and deactivate the plurality of row lines (230) with row voltage signals. According to the present invention, operation life of the field emission display is extended when the electron emissive elements are intermittently reverse-biased by the column voltage signals and the row voltage signals. In another embodiment, the row driver circuit is responsive to a SLEEP signal (770). The row driver circuit (720), upon receiving the SLEEP signal (770), drives a sleep-mode voltage over the row lines (230) to reverse-bias the electron emissive elements.
Abstract:
A field emission display includes a substrate (100), field emitter structures (106) disposed within a dielectric layer (102), a gate electrode layer (104), an insulating material layer (110), and a conductive material layer (116) forming a conductive focusing waffle structure of the present invention.
Abstract:
A flat-panel display contains a pair of plate structures (40 and 42) coupled together to firm a sealed enclosure. A spacer (44) is situated in the enclosure for resisting external forces exerted on the display. The spacer is formed with a main spacer portion (60), typically shaped like a wall, and a face electrode (66) situated over a face of the main spacer portion. The face electrode causes electrons moving from one of the plate structures to the other to be defected in such a manner as to compensate for other electron deflection caused by the presence of the spacer. The face electrode is divided into multiple laterally separated segments (661 - 66N) to improve the accuracy of the compensation along the length of the spacer. In fabricating the display, a masking step is typically utilized in defining the widths of the segments of the face electrode.
Abstract:
In a partially finished electron-emitting device having electron-emissive elements (56A) formed at least partially with electrically non-insulating emitter material, electron-emissive element contamination that could result from passage of contaminant material through an excess layer (56B) of the emitter material is inhibited by forming a protective layer (58 or 70) over the excess emitter-material layer before performing additional processing operations on the electron-emitting device. Subsequent to these processing operations, material of the excess and protective layers overlying the electron-emissive elements is removed to expose the electron-emissive elements.
Abstract:
Material of a given chemical type is selectively electrochemically removed from a structure by subjecting portions of the structure to an electrolytic bath (62). The characteristics of certain parts of the structure are chosen to have electrochemical reduction half-cell potentials that enable removal of the undesired material to be achieved in the bath without applying external potential to any part of the structure. The electrolytic bath (62) can be implemented with liquid that is inherently corrosive to, or inherently benign to, material of the chemical type being selectively removed.
Abstract:
Multiple procedures are presented for removing contaminant material (12) from electron-emissive elements (10) of an electron-emitting device (30). One procedure involves converting the contaminant material into gaseous products (14), typically by operating the electron-emissive elements, that move away from the electron-emissive elements. Another procedure entails converting the contaminant material into further material (16) and removing the further material. An additional procedure involves forming surface coatings (18 or 20) over the electron-emissive elements. The contaminant material is then removed directly from the surface coatings or by removing at least part of each surface coating.