Abstract:
The present invention relates to chemical compounds that can in particular be used as structural mimetics of proline-rich peptides. The compounds of the present invention are capable of selectively inhibiting ena/VASP-EVH1-mediated protein-protein interactions. The invention further relates to the use of said compounds as pharmaceutical agents and to the use of the pharmaceutical agents to treat tumor diseases. The chemical compounds of the present invention can significantly inhibit the chemotaxis and motility of invasive tumor cells and can therefore be used in the treatment and/or prevention of tumor metastases.
Abstract:
A method is described for forming at least one metal contact on a surface of a semiconductor and a device with at least one metal contact. The method is used for forming at least one metal contact (60) on a surface (11) of a semiconductor (10) and has the steps of: applying a metal layer (20) of palladium onto the semiconductor surface (11), applying a mask (40, 50) onto the metal layer (20), and structuring the palladium of the metal layer (20) using the mask (40, 50), wherein lateral deposits (21) of the metal are formed on sidewalls of the mask by the structuring so that the mask is embedded between the deposits (21) and the structured metal layer (20′) after the structuring. Since the mask is conductive, it can remain embedded in the metal. The deposits and the mask form a part of the contact.
Abstract:
Disclosed are oxo-hydroquinazolines that are useful as selective TSHR agonists. The compounds may be used for detecting or treating thyroid cancer, or treating a bone degenerative disorder.
Abstract:
Described is a method for producing a semiconductor device (100), in which at least one column-shaped or wall-shaped semiconductor device (10, 20) extending in a main direction (z) is formed on a substrate (30), wherein at least two sections (11, 13, 21, 23) of a first crystal type and one section (12, 22) of a second crystal type therebetween are formed in an active region (40), each section with a respective predetermined height (h1, h2), wherein the first and second crystal types have different lattice constants and each of the sections of the first crystal type has a lattice strain which depends on the lattice constants in the section of the second crystal type. According to the invention, at least a height (h2) of the section (12, 22) of the second crystal type and a lateral thickness (D) of the active region (40) is formed perpendicular to the main direction, in such a manner that the lattice strain in one of the sections (11) of the first crystal type also depends on the lattice constants in the other section (13) of the first crystal type. A semiconductor device (100) is also described, having at least one column-shaped or wall-shaped semiconductor element (10, 20) on a substrate (30), which can be produced in particular by means of the stated method.
Abstract:
The invention relates to a device (122) having an arrangement of optical elements comprising excitation light sources (101, 115) for generating individual light beams (102, 116) having different wavelengths for exciting a sample in such a way that light scattered back from the sample as a result of the excitation is made available to a Raman spectroscopic analysis. The device (122) comprises deflection devices (103, 117) associated with the individual light beams (102, 116) for deflecting the individual light beams (102, 116) onto a common light path, wherein the common light path comprises a same optical system (109) for focusing the light beams (102, 116).
Abstract:
A diode laser having aluminum-containing layers and a Bragg grating for stabilizing the emission wavelength achieves an improved output/efficiency. The growth process is divided into two steps for introducing the Bragg grating, wherein a continuous aluminum-free layer and an aluminum-free mask layer are continuously deposited after the first growth process such that the aluminum-containing layer is completely covered by the continuous aluminum-free layer. Structuring is performed outside the reactor without unwanted oxidation of the aluminum-containing semiconductor layer. Subsequently, the pre-structured semiconductor surface is further etched inside the reactor and the structuring is impressed into the aluminum-containing layer. In this process, so little oxygen is inserted into the semiconductor crystal of the aluminum-containing layers in the environment of the grating that output and efficiency of a diode laser are not reduced as compared to a diode laser without grating layers that was produced in an epitaxy step.
Abstract:
The present invention relates to novel anti-FLT3 antibodies for specifically targeting extracellular domain of FLT3. The present invention further relates to targeting FLT3 by novel antibody-drug-conjugates (ADCs) based on the novel anti-FLT3 antibodies of the present invention, especially in combination with kinase inhibitors, for use in therapy and/or for use in a method of cancer treatment (e.g., acute myeloid leukemia (AML) with or without internal tandem duplication (ITD) mutations in the FLT3 gene (FLT3-ITD)).
Abstract:
The invention relates to a laser device (100) comprising a substrate (10), on the surface of which an optical waveguide (11) is arranged, which has an optical resonator (12, 13) with such a resonator length that at least one resonator mode forms a stationary wave in the resonator (12, 13), and an amplification medium that is arranged on a surface of the optical waveguide (11), wherein the amplification medium comprises a photonic crystal (20) having a plurality of column- and/or wall-shaped semiconductor elements (21) which are arranged periodically on the surface of the optical waveguide (11) while protruding from the optical waveguide (11), and wherein the photonic crystal (20) is designed to optically interact with the at least one resonator mode of the optical resonator (12, 13) and to amplify light having a wavelength of the at least one resonator mode of the optical resonator (12, 13). The invention also relates to methods for the operation and production of the laser device.
Abstract:
Disclosed are novel conjugates and processes for the preparation thereof. A process for the preparation of alkene- or alkyne-phosphonamidates comprises the steps of
(I) reacting a compound of formula (III)
with an azide of formula (IV)
to prepare a compound of formula (V)
(II) reacting a compound of formula (V) with a thiol-containing molecule of formula (VI)
Abstract:
Compounds of the following formula: having defined substituents. The compounds can inhibit class II phosphoinositide 3-kinase (PI3K) signaling and are useful for the treatment of a medical condition associated with defective PI3K signaling, such as myopathy, cancer, diabetes, thrombosis or cardiovascular disease.