Abstract:
Metallurgical processing installation comprising a metallurgical vessel lined internally with water cooled panels. A vessel access tower (61) fits around vessel (11) and supports a coolant flow system (62) to provide for flow of cooling water to and from the cooling panels within the vessel through water inlet and outlet connections (42,43) distributed around the exterior of the vessel. Coolant flow system (62) includes large diameter water supply and return pipes (66,67) mounted on an upper part of the tower (61) to extend around the upper end of vessel (11), a first series of vertical dropper pipes (68) of relatively small diameter connected to the main water supply pipe 66 and extending downwardly to connections with the water inlet connectors for respecting cooling panels of the vessel and a second series of smaller diameter vertical pipes (69) connected at their upper ends to the main return pipe (67) and at their lower ends to undivided outlet connectors for the cooling panels in the vessel.
Abstract:
An injection lance (26) for injecting hot gas into a vessel includes an elongate gas flow duct (31) which receives hot gas from a gas inlet structure (32) and an elongate central tubular structure (33) which extends within gas flow duct (31) from its rear end to its forward end. Adjacent the forward end of duct (31), central structure (33) carries a series of flow directing vanes (34) for imparting swirl to the hot gas flow exiting the duct. The wall of duct (31) downstream from gas inlet (32) is internally water cooled by flow of water through annular passages (43,44). The cooling water also flows through the interior of a duct tip (36) at the forward end of duct (31). The front end of central structure (33) which carries the swirl vanes (34) is internally water cooled by cooling water supplied forwardly through a central water flow passage (52) from a water inlet (53) at the rear of the lance through to a nose (35) of the central structure. The cooling water returns back through the central structure via an annular water return passage (54) to a water outlet (55) at the rear end of the lance.
Abstract:
A process for direct smelting a metalliferous feed material is disclosed. Char and fuel gas are produced by pre-treating coal with an oxygen-containing gas. The fuel gas is used to heat an oxygen-containing gas and/or to produce an oxygen-containing gas in an oxygen plant. Metalliferous feed material, char, and the oxygen-containing gas are injected into a direct smelting vessel, and the metalliferous feed material is smelted to molten metal in the direct smelting vessel using the char as a source of energy and as a reductant.
Abstract:
A direct smelting process for producing metal from a metalliferous feed material is disclosed. The direct smelting process is a molten bath-based process in which smelting occurs predominantly in the metal layer, carrier gas/metalliferous feed material/solid carbonaceous material are injected into the metal layer via lances/tuyeres, and oxygen-containing gas is injected into the top space above the molten bath and post-combusts reaction gases released from the bath. The injection of metalliferous feed material and solid carbonaceous material causes molten material to be projected from the molten bath as splashes, droplets and streams and to form a transition zone. The process is characterised by forming a pipe of a solid material on an outlet end of at least one lance/tuyere while injecting the metalliferous feed material and the carbonaceous material through the lances/tuyeres and thereby extending the effective length of the lance/tuyere or the lances/tuyeres.
Abstract:
The HIsmelt process as disclosed in WO 96/31627 A1 (PCT/AU96/00197) consists of forming a molten bath of iron and slag, injecting metalliferous feed (oxides), solid carbonaceous material (coal and/or coke) and slag formers into the bath and smelting the metalliferous feed to metal. The process also consists of post-combusting the unoxidised reaction gases and transferring the generated heat to the bath to facilitate the smelting. In addition, a transition zone between the post-combustion zone and the quiescent metal zone is formed by injecting the charge together with a carrier gas into the bath, thus causing the metal and slag to be projected into the transition zone. The present application constitutes an improvement over the afore-mentioned application, in that lances/tuyères are inserted deep into the melt to provide oxygen for post-combustion of the unoxidised reaction gases and, in addition, to project splashes, droplets and streams of molten metal into the transition zone, which, in turn, fall back into the bath, thus effectively transferring heat from the post-combustion zone to the molten bath. The level of dissolved carbon in the bath is maintained at >/= 3 %, preferably > 4 %. The FeO level in the slag is maintained at . Primary post-combustion is set at > 40 %, preferably > 50 % or > 60 %.
Abstract:
An apparatus for dry physical separation of particulate material comprises an inclined separating surface having upper and lower edges, oscillation means for inducing non-linear oscillatory motion of the separating surface, and introduction means for introducing the particulate material onto the separating surface between the upper and lower edges.
Abstract:
A process for upgrading a titaniferous material by removal of impurities from the titaniferous material is disclosed. The process comprises alternate leaching of the titaniferous material in a caustic leach and a pressure sulphuric acid leach.
Abstract:
The application discloses a process for upgrading a titaniferous material by removal of impurities contained in the material especially radionuclides. The process involves heating the titaniferous material to a temperature of less than 1300 C to form a solid titaniferous phase and a liquid oxide or glassy phase in the presence of a material that promotes the formations of such phases, cooling the product at a rate that maintains the glassy phase in an amorphous state and leaching the solidified material with an acid or an alkali to remove the impurities. Materials that promote the formation of the desired phases include compounds of alkali metals and boron. Examples include borax, caustic soda, soda ash and silica.
Abstract:
PCT No. PCT/AU93/00660 Sec. 371 Date Aug. 16, 1995 Sec. 102(e) Date Aug. 16, 1995 PCT Filed Dec. 17, 1993 PCT Pub. No. WO94/14503 PCT Pub. Date Jul. 7, 1994A process for the treatment of toxic materials, for example, inorganic compounds, halogenated organic compounds such as polychlorinated biphenyls (PCBs), dioxin and dichlorodiphenyl trichloroethane (DDT) and chemical weapons such as Sarin and mustard. The process is based on the discovery that mechanical activation can induce chemical reactions which break down the molecular structure of toxic materials and form products which are simple, non-toxic compounds. The process involves subjecting a mixture of a toxic material and a suitable reagent to mechanical activation to produce a non-toxic end product or products. Mechanical activation is typically performed inside a mechanical mill, for example, a ball mill. Ball milling of various toxic materials with appropriate reagents was found to result in virtual total destruction of the toxic starting material.
Abstract:
A method of treating inorganic solid waste in a bath of molten metal contained in a vessel (3) which has a space above the bath and a waste gas outlet (11) is disclosed. The method comprises injecting waste into the bath to form a primary reaction zone (13) in which there are reactions between the waste and the bath or in which the waste undergoes a change of phase to convert the waste into more readily recoverable or disposable products. The method further comprises injecting oxygen-containing gas towards the surface of the bath to form a secondary reaction zone (17) in a section of the space above the bath through which oxidisable products released from the primary reaction zone (13) flow to reach the waste gas outlet (11) in the vessel (3) and in which the oxidisable products are oxidised and the heat released by such oxidation is transferred into the bath.