Abstract:
본 발명은 바나듐 오산화물을 이용하여 리튬 2차전지용 양극판을 제조하는 방법에 관한 것으로, H 2 O 2 가 포함된 수용액에 바나듐 오산화물을 용해시켜 젤(gel)을 형성함으로서 결착제를 사용하지 않거나 적은 양을 사용하더라도 금속 지지체 상에 도포가 가능하다. H 2 O 2 가 함유된 수용액에 적당량의 바나듐 오산화물을 가하면 산소가스를 발생시키면서 투명한 수용액을 형성한다. 형성된 수용액은 시간이 지나면 점성을 가지는 젤(gel) 상태로 변하게 된다. 젤(gel)이 형성되는 과정에서 도전제와 소량의 바인더를 혼합하면 활물질인 바나듐 오산화물과 균일하게 혼합된 슬러리가 만들어진다. 이와 같이 만들어진 슬러리는 높은 점성을 가지므로 소량의 바인더를 사용하더라도 금속 지지대에 도포가 가능하다. 또한, 젤(gel)이 형성되는 과정에서 도전제, 바인더 등의 첨가물을 혼합하므로 분말을 혼합하는 방식보다 쉽고 균일하게 혼합이 이루어져 첨가물의 사용량을 줄일 수 있으며, n-메틸 피롤리돈(NMP)나 아세톤과 같은 인체에 유해한 용매를 사용하지 않으므로 환경 친화적이다.
Abstract:
PURPOSE: Provided is a simple and economical method for preparing lithium-chrome-manganese oxides, which have a high discharge capacity suitable to be used as cathode materials for a lithium secondary battery having excellent and stable properties. CONSTITUTION: The method for preparing lithium-chrome-manganese oxides for a lithium secondary battery comprises: a step(10,20) for adding aqueous lithium hydroxide(LiOH) solution to aqueous solution of chrome acetate hydroxide(Cr3(OH)2 (CH3CO2)7) mixed with manganese acetate tetrahydrate((CH3CO2)2Mn·4H2O) to form homogeneous fine precipitates; a step(30) for burning the fine precipitates to form precursor oxide powder represented by the formula of Li£CrxLi(1/3-x/3) Mn(2/3-2x/3)|O2, in which X is 0.1-0.5; and a step(40-80) for heat-treating the precursor oxide powder to form oxide powder having a layered structure.
Abstract translation:目的:提供一种制备锂 - 锰 - 锰氧化物的简单且经济的方法,其具有适合用作具有优异和稳定性能的锂二次电池的阴极材料的高放电容量。 构成:锂二次电池用锂 - 锰 - 锰氧化物的制造方法包括:向氢氧化铬(Cr 3(OH)2(CH 3 CO 2))的水溶液中添加氢氧化锂(LiOH)水溶液的工序(10,20) )7)与四水合乙酸锰((CH3CO2)2Mn·4H2O)混合,形成均匀的细小沉淀物; 用于燃烧微细沉淀物以形成由式Li x Cr x Li(1/3-x / 3)Mn(2 / 3-2x / 3)| O 2表示的前体氧化物粉末的步骤(30),其中X为0.1 -0.5; 和用于热处理前体氧化物粉末以形成具有层状结构的氧化物粉末的步骤(40-80)。
Abstract:
PURPOSE: Provided is a method for preparing lithium-manganese-nickel oxides having excellent stability and discharge capacity suitable for a lithium secondary battery, by a simple process at a low cost. CONSTITUTION: The method for preparing lithium-manganese-nickel oxides for a lithium secondary battery, represented by the formula of Li£NixLi(1/3-2x/3)Mn(2/3-x/3)|O2 (0.05
Abstract:
PURPOSE: A positive electrode composition containing a poly(dithiodianiline) derivative, a lithium secondary battery obtained from the composition and their preparation methods are provided, to allow a positive electrode composition to be produced massively with a low cost and to improve capacity characteristic of a lithium secondary battery remarkably. CONSTITUTION: The positive electrode composition comprises an active material comprising the doped poly(dithiodianiline) derivative having the repeating unit represented by the formula; a conductive agent; and a binder, wherein X is H, Li, Na or K; Y is F, Cl, Br, I, ClO4, PF6, BF4, CF3SO3, HSO4 or C12H25C6H4SO3; k, k' and k'' are 0.01-0.5; m is 0-0.99; and n is 2-10,000. Preferably the conductive agent is an amorphous carbon; and the binder is at least one selected from the group consisting of poly(tetrafluoroethylene), a copolymer of vinylidene fluoride and hexafluoropropylene, poly(vinylidene fluoride), and a copolymer of vinylidene fluoride and tetrafluoroethylene.
Abstract:
PROBLEM TO BE SOLVED: To provide a dye sensitized solar battery containing titano-silicalite-2. SOLUTION: A solar battery comprises a semiconductor electrode 10 formed by coating a mixture layer of transition metal oxide and titano-silicalite-2 on a transparent base plate 12, an opposing electrode 20, and electrolyte liquid 30 filled between the semiconductor electrode 10 and the opposing electrode 20. It is preferable that the semiconductor electrode includes a layer of dyestuff molecule like ruthenium complex absorbed to the transition metal oxide. Nano- particle of titanium dioxide is preferable as the transition metal oxide. It is preferable for the mixture layer to have a thickness of 10-30 μm.
Abstract:
PURPOSE: A dye-sensitized solar cell including polymer electrolyte gel containing polyvinylidene fluoride is provided to stabilize a photoelectric-chemical characteristic by improving the volatile characteristic of an existing organic solvent. CONSTITUTION: The dye-sensitized solar cell includes a semiconductor electrode(10), an opposite electrode(20), and a gel type polymer electrolyte(30). The gel type polymer electrolyte is inserted between the semiconductor electrode and the opposite electrode. The gel type polymer electrolyte includes a polyvinylidene fluoride polymer or a polyvinylidene fluoride copolymer. The gel type polymer electrolyte is formed with N-methyl-2-pyrrolidone solvent and the polyvinylidene fluoride polymer or the polyvinylidene fluoride copolymer.
Abstract:
본 발명은 전극과 분리막이 일체형인 산화환원형 초고용량 커페시터 및 그 제조방법에 관한 것으로, 더 상세하게는 리튬염으로 도핑된 폴리아닐린 분말을 포함하는 활성전극과, 상기 활성전극의 사이에 삽입된 고분자분리막 고분자막을 포함하고, 상기 전극과 분리막이 일체형인 산화환원형 초고용량 커페시터 및 그 제조방법을 제공한다. 본 발명에 따른 커페시터는 전극과 분리막이 일체형이므로 계면저항이 최소화될 뿐 아니라, 또한 그 제조방법이 보다 간단하고 단순하며 형태에 제약이 줄어든다는 장점을 갖는다.
Abstract:
PURPOSE: A nanoparticle oxide solar cell, its preparation method, a solar cell module using the solar cell and a transparent electric window are provided, to minimize the space between solar cells of the module for minimizing the loss of power and maximizing the contact between cells. CONSTITUTION: The nanoparticle oxide solar cell comprises a primary conductive plate(21) where a negative electrode(22) region is formed in one side; a secondary conductive plate(21') where a positive electrode(23) region is formed in the other side; a binding/sealing means which binds the primary and secondary conductive plates so that a primary and secondary conductive plates face each other and the two regions where the positive or negative electrode is not formed are not overlapped, and seals the regions where the positive electrode and the negative electrode face each other; a primary conductive adhesive(28a) which is formed in the unoverlapped region of the primary conductive plate; and a secondary conductive adhesive(28b) which is formed in the unoverlapped region of the secondary conductive plate. Preferably the sealed region formed by the binding/sealing means contains an electrolyte.