Abstract:
Embodiments of an Evolved Node-B (eNB), User Equipment (UE), and methods for paging are disclosed herein. The eNB may transmit a paging message that may include paging identifiers to indicate an intention of the eNB to send downlink data to the first group of UEs. The paging message may further include a bitmap of paging indicators to indicate whether the eNB intends to send downlink data to a second group of UEs. The paging message may include the bitmap when a length of the bitmap is less than a combined length of paging identifiers for a paging portion of second group of UEs to which the eNB intends to send downlink data.
Abstract:
Embodiments described herein relate generally to a communication between a user equipment (“UE”) and a plurality of evolved Node Bs (“eNBs”). A UE may be adapted to operate in a dual connectivity mode on respective wireless cells provided by first and second eNBs. The UE may communicate with a first eNB in a first frequency band. The UE may communicate with a second eNB in a second frequency band. The first eNB may detect that the second frequency band is unavailable. Based on this detection, the first eNB may notify the UE that communication in the second frequency band is no longer available. In response, the UE may control a radio to cease communication in the second frequency band. Other embodiments may be described and/or claimed.
Abstract:
A Long Term Evolution (LTE) protocol enhancement realizes the full benefit of dual connectivity User Equipment (UE) in LTE networks by providing a toggling mechanism to alleviate uncertainty in available transmit power, or power headroom, for uplink transmissions so that efficient utilization of the uplink radio resources can be achieved in dual connectivity. A new field for Radio Resource Control (RRC) messages enables toggling for alternating transmissions to Master and Secondary Evolved Node Bs (MeNBs and SeNBs) during alternating time periods. An enhanced Media Access Control Element enables toggling by the MeNB, SeNB or UE. In one embodiment, the UE schedules uplink transmissions to a SeNB during even numbered time divisions when the UE schedules the uplink transmissions to the MeNB during the odd numbered time divisions, or during the odd numbered time divisions when the UE schedules the uplink transmissions to the MeNB during the even numbered time divisions.
Abstract:
Technology for efficiently splitting a bearer at the packet data convergence protocol (PDCP) layer for uplink (UL) data transfers in wireless networks where dual connectivity is available is disclosed. A user equipment (UE) can send buffer status reports (BSRs) to a master evolved node B (MeNB) and a secondary evolved node B (SeNB). The BSRs can be formatted such that the amount of data in a radio link control (RLC) buffer at the UE and the amount of data in a packet data convergence protocol (PDCP) buffer at the UE are contained in different fields. The BSRs can also contain redundancy indicator (RI) values specifying a redundancy level between the PDCP buffer amounts included in the BSRS. The MeNB and the SeNB may then coordinate, via an X2 interface, an amount of uplink (UL) resources to allocate to the UE.
Abstract:
Embodiments of the present disclosure describe systems and methods for partitioning radio frequency spectrum for multiple categories of communication. Various embodiments may include partitioning of an available frequency band into a first partition for a first category of communication and a second partition for a second category of communication. In embodiments, the first category of communication may be designed for devices having a relatively lower cost of implementation than the second category of communication. In some embodiments, the first partition may be aggregated opportunistically with the second partition based on certain conditions such as, for example, under utilization of the first partition. Other embodiments may be described and/or claimed.
Abstract:
The present disclosure presents embodiments of a system and method for improved uplink transmission management in a network that includes one or more machine-type communication (MTC) devices. For example, in an aspect, the present disclosure presents a method of cluster head selection for a MTC device cluster, the method comprising transmitting a polling message from an eNodeB to one or more MTC devices of the MTC cluster, receiving one or more polling responses at the eNodeB from the one or more MTC devices, and determining the set of cluster heads based on the one or more polling responses; and transmitting cluster head information associated with each cluster head of the set of cluster heads to the one or more MTC devices.
Abstract:
A 3GPP LTE protocol enhancement may realize the full benefit of dual connectivity in Long Term Evolution (LTE) networks by providing a mechanism to carry Radio Resource Control (RRC) messages and/or Information Elements (IE)s from a Secondary Evolved Node B (SeNB) to User Equipment (UE) via Master Evolved Node B (MeNB) RRC messages. Novel downlink (DL) Common Control Channel (CCCH) and Dedicated Control Channel (DCCH) messages, and augmented messages having Information Elements (IE)s for relaying RRC messages from a SeNB to a UE via a MeNB, are defined. Modifications to ASN.1 program coding of LTE 3rd Generation Partnership Project specifications to enable RRC messages from the MeNB to relay RRC information from the SeNB to the UE are provided. In one embodiment, the UE receives, from a MeNB, an RRC message comprising information relayed from a SeNB and interprets the RRC message for control channel and radio resource configuration information from the SeNB.
Abstract:
A 3GPP LTE protocol enhancement realizes the full benefit of discontinuous reception (DRX) in Long Term Evolution networks by coordinating and aligning DRX operations for conserving power and timing overhead. A dual connectivity enabled User Equipment (UE) comprising a processor and transceiver is configured to align DRX configuration between counterpart Evolved Node Bs (eNB)s, wherein counterpart eNBs are a Master eNB (MeNB) and a Secondary eNB (SeNB) simultaneously connected to the UE, communicate system frame timing and system frame number (SFN) information between the counterpart eNBs, align DRX start offset (drxStartOffset) values for the counterpart eNBs according to the communicated system frame timing and SFN information to compensate for offsets in system frame timing, and allow the start of a DRX ON duration at specific frame or sub-frame times determined by the drxStartOffset values, after the expiration of a DRX inactivity timer.
Abstract:
Embodiments described herein relate generally to a communication between a user equipment (“UE”) and a plurality of evolved Node Bs (“eNBs”). A UE may be adapted to operate in a dual connectivity mode on respective wireless cells provided by first and second eNBs. The UE may communicate with a first eNB in a first frequency band. The UE may communicate with a second eNB in a second frequency band. The first eNB may detect that the second frequency band is unavailable. Based on this detection, the first eNB may notify the UE that communication in the second frequency band is no longer available. In response, the UE may control a radio to cease communication in the second frequency band. Other embodiments may be described and/or claimed.
Abstract:
Systems and methods are disclosed for communicating enhanced user equipment (UE) assistance information between nodes in wireless communication systems. The UE achieves power savings and latency requirements more effectively by communicating its preferences, constraints and/or requirements to an evolved Node B (eNodeB) in the form of UE assistance information. The UE assistance information may include, for example, an indication of a preferred set of discontinuous reception (DRX) settings, current data traffic conditions, expected data traffic conditions, power or performance preferences, and/or an indication of the UE's mobility between cells.