Abstract:
A wafer structure (88) includes a device wafer (20) and a cap wafer (60). Semiconductor dies (22) on the device wafer (20) each include a microelectronic device (26) and terminal elements (28, 30). Barriers (36, 52) are positioned in inactive regions (32, 50) of the device wafer (20). The cap wafer (60) is coupled to the device wafer (20) and covers the semiconductor dies (22). Portions (72) of the cap wafer (60) are removed to expose the terminal elements (28, 30). The barriers (36, 52) may be taller than the elements (28, 30) and function to prevent the portions (72) from contacting the terminal elements (28, 30) when the portions (72) are removed. The wafer structure (88) is singulated to form multiple semiconductor devices (89), each device (89) including the microelectronic device (26) covered by a section of the cap wafer (60) and terminal elements (28, 30) exposed from the cap wafer (60).
Abstract:
An MEMS pressure sensor comprising: a first substrate (100) having a sensing diaphragm (101a) of a piezoelectric pressure sensing unit (101), an electrical connection diffusion layer (103), and a first bonding layer (102) on a surface of the first substrate (100), a second substrate (200) having an inter-conductor dielectric layer (203), a conductor connection layer (201) arranged within the inter-conductor dielectric layer (203), and a second bonding layer (202) on a surface of the second substrate (200). The second substrate (200) and the first substrate (100) are oppositely arranged, and are fixedly coupled via the first bonding layer (102) and the second bonding layer (202); the first bonding layer (102) and the second bonding layer (202) have matching patterns and are both made from a conductive material. Also provided is a method for manufacturing the MEMS pressure sensor. The MEMS pressure sensor and the manufacturing method therefore allow for compatibility with integrated circuit manufacturing technique, for effectively reduced manufacturing costs, and for a downsized sensor.
Abstract:
A structure and method are provided for self-test of a Z axis sensor. Two self-test current lines are symmetrically positioned adjacent, but equidistant from, each sense element. The vertical component of the magnetic field created from a current in the self-test lines is additive in a flux guide positioned adjacent, and orthogonal to, the sense element; however, the components of the magnetic fields in the plane of the sense element created by each of the two self-test current line pairs cancel one another at the sense element center, resulting in only the Z axis magnetic field being sensed during the self-test.
Abstract:
A method and apparatus eliminate magnetic domain walls in a flux guide by applying, either simultaneously or sequentially, a current pulse along serially positioned reset lines to create a magnetic field along the flux guide, thereby removing the magnetic domain walls. By applying the current pulses in parallel and stepping through pairs of shorter reset lines segments via switches, less voltage is required.
Abstract:
A pressure transducer includes a substrate, a piezoresistive element, a first conductive element, a first terminal, and a test structure. The substrate has a surface and a cavity. A diaphragm layer is formed over the cavity and over the surface of the substrate. The piezoresistive element is formed in the diaphragm layer. The first conductive element is formed in the diaphragm layer, and has a first conductivity type. The first conductive element is coupled to the piezoresistive element. The first terminal is formed over a surface of the diaphragm layer and coupled to the first conductive element. The test structure has the first conductivity type and is formed in the diaphragm layer. The test structure has an edge spaced apart from an edge of the first conductive element by a predetermined distance. A surface charge accumulation on the diaphragm layer is detected using the test structure.
Abstract:
A method of forming a MEMS device includes forming a sacrificial layer over a substrate. The method further includes forming a metal layer over the sacrificial layer and forming a protection layer overlying the metal layer. The method further includes etching the protection layer and the metal layer to form a structure having a remaining portion of the protection layer formed over a remaining portion of the metal layer. The method further includes etching the sacrificial layer to form a movable portion of the MEMS device, wherein the remaining portion of the protection layer protects the remaining portion of the metal layer during the etching of the sacrificial layer to form the movable portion of the MEMS device.
Abstract:
A magnitude and direction of at least one of a reset current and a second stabilization current (that produces a reset field and a second stabilization field, respectively) is determined that, when applied to an array of magnetic sense elements, minimizes the total required stabilization field and reset field during the operation of the magnetic sensor and the measurement of the external field. Therefore, the low field sensor operates optimally (with the highest sensitivity and the lowest power consumption) around the fixed external field operating point. The fixed external field is created by other components in the sensor device housing (such as speaker magnets) which have a high but static field with respect to the low (earth's) magnetic field that describes orientation information.
Abstract:
A probe card and method are provided for testing magnetic sensors at the wafer level. The probe card has one or more probe tips having a first pair of solenoid coils in parallel configuration on first opposed sides of each probe tip to supply a magnetic field in a first (X) direction, a second pair of solenoid coils in parallel configuration on second opposed sides of each probe tip to supply a magnetic field in a second (Y) direction orthogonal to the first direction, and an optional third solenoid coil enclosing or inscribing the first and second pair to supply a magnetic field in a third direction (Z) orthogonal to both the first and second directions. The first pair, second pair, and third coil are each symmetrical with a point on the probe tip array, the point being aligned with and positioned close to a magnetic sensor during test.
Abstract:
A radio frequency (RF) circuit (100) as disclosed herein is fabricated on a substrate (204, 304) using integrated passive device (IPD) process technology. The RF circuit (100) includes an RF inductor (200, 300) and an integrated inductive RF coupler (202, 302) located proximate to the RF inductor (200, 300). The inductive RF coupler (202, 302), its output and grounding contact pads, and its transmission lines are fabricated on the same substrate (204, 304) using the same IPD process technology. The inductive RF coupler (202, 302) includes a coupling section (212, 306) that is either located inside or outside a spiral of the RF inductor (200, 300). The inductive RF coupler (202, 302) and the RF inductor (200, 300) are cooperatively configured to function as the windings of an RF transformer, thus achieving the desired coupling. The inductive RF coupler (202, 302) provides efficient and reproducible RF coupling without increasing the die footprint of the RF circuit (100).
Abstract:
A MEMS device uses both piezoelectric actuation and electrostatic actuation and also provides enough electrostatic force to enable very low voltage operation. As the electrostatic actuation uses DC and the piezoelectric actuation uses high frequency, the structure of the device minimizes the coupling of the two actuator structures to reduce noise. In addition, for some embodiments, the location of the physical structures of the piezoelectric actuator and electrostatic actuator generates higher contact force with lower voltage. For some embodiments, the piezoelectric actuator and electrostatic actuator of the device are connected at the contact shorting bar or capacitor plate location. This makes the contact shorting bar or capacitor plate the focal point of the forces generated by all of the actuators, thereby increasing the switch contact force.