SEMICONDUCTOR DEVICE AND METHOD OF FABRICATING SAME
    101.
    发明申请
    SEMICONDUCTOR DEVICE AND METHOD OF FABRICATING SAME 有权
    半导体器件及其制造方法

    公开(公告)号:US20140008739A1

    公开(公告)日:2014-01-09

    申请号:US14018091

    申请日:2013-09-04

    Abstract: A wafer structure (88) includes a device wafer (20) and a cap wafer (60). Semiconductor dies (22) on the device wafer (20) each include a microelectronic device (26) and terminal elements (28, 30). Barriers (36, 52) are positioned in inactive regions (32, 50) of the device wafer (20). The cap wafer (60) is coupled to the device wafer (20) and covers the semiconductor dies (22). Portions (72) of the cap wafer (60) are removed to expose the terminal elements (28, 30). The barriers (36, 52) may be taller than the elements (28, 30) and function to prevent the portions (72) from contacting the terminal elements (28, 30) when the portions (72) are removed. The wafer structure (88) is singulated to form multiple semiconductor devices (89), each device (89) including the microelectronic device (26) covered by a section of the cap wafer (60) and terminal elements (28, 30) exposed from the cap wafer (60).

    Abstract translation: 晶片结构(88)包括器件晶片(20)和盖晶片(60)。 器件晶片(20)上的半导体管芯(22)各自包括微电子器件(26)和端子元件(28,30)。 阻挡层(36,52)位于器件晶片(20)的非活性区域(32,50)中。 盖晶片(60)耦合到器件晶片(20)并覆盖半导体管芯(22)。 去除盖晶片(60)的部分(72)以露出端子元件(28,30)。 障碍物(36,52)可以比元件(28,30)更高,并且用于在部分(72)被移除时防止部分(72)接触端子元件(28,30)。 晶片结构(88)被单个化以形成多个半导体器件(89),每个器件(89)包括由盖晶片(60)的一部分覆盖的微电子器件(26)和从其暴露的端子元件(28,30) 盖晶片(60)。

    MEMS PRESSURE SENSOR AND MANUFACTURING METHOD THEREFOR
    102.
    发明申请
    MEMS PRESSURE SENSOR AND MANUFACTURING METHOD THEREFOR 有权
    MEMS压力传感器及其制造方法

    公开(公告)号:US20140001584A1

    公开(公告)日:2014-01-02

    申请号:US14005185

    申请日:2012-02-23

    Applicant: Lianjun Liu

    Inventor: Lianjun Liu

    Abstract: An MEMS pressure sensor comprising: a first substrate (100) having a sensing diaphragm (101a) of a piezoelectric pressure sensing unit (101), an electrical connection diffusion layer (103), and a first bonding layer (102) on a surface of the first substrate (100), a second substrate (200) having an inter-conductor dielectric layer (203), a conductor connection layer (201) arranged within the inter-conductor dielectric layer (203), and a second bonding layer (202) on a surface of the second substrate (200). The second substrate (200) and the first substrate (100) are oppositely arranged, and are fixedly coupled via the first bonding layer (102) and the second bonding layer (202); the first bonding layer (102) and the second bonding layer (202) have matching patterns and are both made from a conductive material. Also provided is a method for manufacturing the MEMS pressure sensor. The MEMS pressure sensor and the manufacturing method therefore allow for compatibility with integrated circuit manufacturing technique, for effectively reduced manufacturing costs, and for a downsized sensor.

    Abstract translation: 一种MEMS压力传感器,包括:第一基板(100),具有压电感测单元(101)的感测膜片(101a),电连接扩散层(103)和第一粘结层(102) 第一基板(100),具有导体间介电层(203)的第二基板(200),布置在导体内介电层(203)内的导体连接层(201)和第二接合层(202) )在第二基板(200)的表面上。 第二基板(200)和第一基板(100)相对布置,并且经由第一接合层(102)和第二接合层(202)固定地连接; 第一接合层(102)和第二接合层(202)具有匹配图案并且都由导电材料制成。 还提供了一种用于制造MEMS压力传感器的方法。 因此,MEMS压力传感器和制造方法允许与集成电路制造技术的兼容性,有效降低制造成本,以及小尺寸传感器。

    METHOD AND STRUCTURE FOR TESTING AND CALIBRATING THREE AXIS MAGNETIC FIELD SENSING DEVICES
    103.
    发明申请
    METHOD AND STRUCTURE FOR TESTING AND CALIBRATING THREE AXIS MAGNETIC FIELD SENSING DEVICES 有权
    用于测试和校准三轴磁场感应装置的方法和结构

    公开(公告)号:US20130300402A1

    公开(公告)日:2013-11-14

    申请号:US13467175

    申请日:2012-05-09

    Abstract: A structure and method are provided for self-test of a Z axis sensor. Two self-test current lines are symmetrically positioned adjacent, but equidistant from, each sense element. The vertical component of the magnetic field created from a current in the self-test lines is additive in a flux guide positioned adjacent, and orthogonal to, the sense element; however, the components of the magnetic fields in the plane of the sense element created by each of the two self-test current line pairs cancel one another at the sense element center, resulting in only the Z axis magnetic field being sensed during the self-test.

    Abstract translation: 提供了一种用于Z轴传感器自检的结构和方法。 两条自测电流线对称地定位在与每个感测元件相邻但等距离的位置。 由自检线中的电流产生的磁场的垂直分量在与感测元件相邻并正交的定向磁通导向器中是相加的; 然而,由两个自检电流线对中的每一个产生的感测元件的平面中的磁场的分量在感测元件中心彼此抵消,导致在自适应期间仅感测到Z轴磁场, 测试。

    Pressure transducer having structure for monitoring surface charge
    105.
    发明授权
    Pressure transducer having structure for monitoring surface charge 有权
    压力传感器具有监测表面电荷的结构

    公开(公告)号:US08511170B2

    公开(公告)日:2013-08-20

    申请号:US12949356

    申请日:2010-11-18

    CPC classification number: G01L9/0054 G01L19/069

    Abstract: A pressure transducer includes a substrate, a piezoresistive element, a first conductive element, a first terminal, and a test structure. The substrate has a surface and a cavity. A diaphragm layer is formed over the cavity and over the surface of the substrate. The piezoresistive element is formed in the diaphragm layer. The first conductive element is formed in the diaphragm layer, and has a first conductivity type. The first conductive element is coupled to the piezoresistive element. The first terminal is formed over a surface of the diaphragm layer and coupled to the first conductive element. The test structure has the first conductivity type and is formed in the diaphragm layer. The test structure has an edge spaced apart from an edge of the first conductive element by a predetermined distance. A surface charge accumulation on the diaphragm layer is detected using the test structure.

    Abstract translation: 压力传感器包括衬底,压阻元件,第一导电元件,第一端子和测试结构。 衬底具有表面和空腔。 在空腔上方和衬底的表面上形成隔膜层。 压电元件形成在隔膜层中。 第一导电元件形成在隔膜层中,并且具有第一导电类型。 第一导电元件耦合到压阻元件。 第一端子形成在隔膜层的表面上并且耦合到第一导电元件。 测试结构具有第一导电类型并形成在隔膜层中。 测试结构具有与第一导电元件的边缘间隔开预定距离的边缘。 使用测试结构来检测隔膜层上的表面电荷积聚。

    Method of making a micro-electro-mechanical-systems (MEMS) device
    106.
    发明授权
    Method of making a micro-electro-mechanical-systems (MEMS) device 有权
    制造微电子机械系统(MEMS)装置的方法

    公开(公告)号:US08455286B2

    公开(公告)日:2013-06-04

    申请号:US12916395

    申请日:2010-10-29

    CPC classification number: B81C1/00801 B81B2207/07 B81C2201/053

    Abstract: A method of forming a MEMS device includes forming a sacrificial layer over a substrate. The method further includes forming a metal layer over the sacrificial layer and forming a protection layer overlying the metal layer. The method further includes etching the protection layer and the metal layer to form a structure having a remaining portion of the protection layer formed over a remaining portion of the metal layer. The method further includes etching the sacrificial layer to form a movable portion of the MEMS device, wherein the remaining portion of the protection layer protects the remaining portion of the metal layer during the etching of the sacrificial layer to form the movable portion of the MEMS device.

    Abstract translation: 形成MEMS器件的方法包括在衬底上形成牺牲层。 该方法还包括在牺牲层上形成金属层并形成覆盖在金属层上的保护层。 该方法还包括蚀刻保护层和金属层以形成在金属层的剩余部分上形成保护层的剩余部分的结构。 该方法还包括蚀刻牺牲层以形成MEMS器件的可移动部分,其中保护层的剩余部分在蚀刻牺牲层期间保护金属层的剩余部分以形成MEMS器件的可移动部分 。

    APPARATUS AND METHOD FOR RESET AND STABILIZATION CONTROL OF A MAGNETIC SENSOR

    公开(公告)号:US20130106410A1

    公开(公告)日:2013-05-02

    申请号:US13286026

    申请日:2011-10-31

    CPC classification number: G01R33/0029 G01R33/0041 G01R33/04 G01R33/098

    Abstract: A magnitude and direction of at least one of a reset current and a second stabilization current (that produces a reset field and a second stabilization field, respectively) is determined that, when applied to an array of magnetic sense elements, minimizes the total required stabilization field and reset field during the operation of the magnetic sensor and the measurement of the external field. Therefore, the low field sensor operates optimally (with the highest sensitivity and the lowest power consumption) around the fixed external field operating point. The fixed external field is created by other components in the sensor device housing (such as speaker magnets) which have a high but static field with respect to the low (earth's) magnetic field that describes orientation information.

    PROBE CARD AND METHOD FOR TESTING MAGNETIC SENSORS

    公开(公告)号:US20130009659A1

    公开(公告)日:2013-01-10

    申请号:US13529065

    申请日:2012-06-21

    CPC classification number: G01R1/07307 G01R33/0035 G01R33/09 G01R35/00

    Abstract: A probe card and method are provided for testing magnetic sensors at the wafer level. The probe card has one or more probe tips having a first pair of solenoid coils in parallel configuration on first opposed sides of each probe tip to supply a magnetic field in a first (X) direction, a second pair of solenoid coils in parallel configuration on second opposed sides of each probe tip to supply a magnetic field in a second (Y) direction orthogonal to the first direction, and an optional third solenoid coil enclosing or inscribing the first and second pair to supply a magnetic field in a third direction (Z) orthogonal to both the first and second directions. The first pair, second pair, and third coil are each symmetrical with a point on the probe tip array, the point being aligned with and positioned close to a magnetic sensor during test.

    Radio frequency circuit with integrated on-chip radio frequency inductive signal coupler
    109.
    发明授权
    Radio frequency circuit with integrated on-chip radio frequency inductive signal coupler 有权
    具有集成片上射频感应信号耦合器的射频电路

    公开(公告)号:US07869784B2

    公开(公告)日:2011-01-11

    申请号:US11679573

    申请日:2007-02-27

    Applicant: Lianjun Liu

    Inventor: Lianjun Liu

    CPC classification number: H01P5/02 H01P5/185

    Abstract: A radio frequency (RF) circuit (100) as disclosed herein is fabricated on a substrate (204, 304) using integrated passive device (IPD) process technology. The RF circuit (100) includes an RF inductor (200, 300) and an integrated inductive RF coupler (202, 302) located proximate to the RF inductor (200, 300). The inductive RF coupler (202, 302), its output and grounding contact pads, and its transmission lines are fabricated on the same substrate (204, 304) using the same IPD process technology. The inductive RF coupler (202, 302) includes a coupling section (212, 306) that is either located inside or outside a spiral of the RF inductor (200, 300). The inductive RF coupler (202, 302) and the RF inductor (200, 300) are cooperatively configured to function as the windings of an RF transformer, thus achieving the desired coupling. The inductive RF coupler (202, 302) provides efficient and reproducible RF coupling without increasing the die footprint of the RF circuit (100).

    Abstract translation: 本文公开的射频(RF)电路(100)使用集成无源器件(IPD)工艺技术制造在衬底(204,304)上。 RF电路(100)包括位于RF电感器(200,300)附近的RF电感器(200,300)和集成的感应RF耦合器(202,302)。 感应RF耦合器(202,302),其输出和接地触点焊盘及其传输线使用相同的IPD工艺技术制造在相同的基板(204,304)上。 感应RF耦合器(202,302)包括耦合部分(212,306),其位于RF电感器(200,300)的螺旋内部或外部。 感应RF耦合器(202,302)和RF电感器(200,300)协作地配置成用作RF变压器的绕组,从而实现期望的耦合。 感应RF耦合器(202,302)提供有效且可再生的RF耦合,而不增加RF电路(100)的管芯封装。

    Micromechanical device with piezoelectric and electrostatic actuation and method therefor
    110.
    发明授权
    Micromechanical device with piezoelectric and electrostatic actuation and method therefor 有权
    具有压电和静电致动的微机械装置及其方法

    公开(公告)号:US07830066B2

    公开(公告)日:2010-11-09

    申请号:US11828902

    申请日:2007-07-26

    Applicant: Lianjun Liu

    Inventor: Lianjun Liu

    CPC classification number: H02N1/008 H01G5/18 H01L41/094

    Abstract: A MEMS device uses both piezoelectric actuation and electrostatic actuation and also provides enough electrostatic force to enable very low voltage operation. As the electrostatic actuation uses DC and the piezoelectric actuation uses high frequency, the structure of the device minimizes the coupling of the two actuator structures to reduce noise. In addition, for some embodiments, the location of the physical structures of the piezoelectric actuator and electrostatic actuator generates higher contact force with lower voltage. For some embodiments, the piezoelectric actuator and electrostatic actuator of the device are connected at the contact shorting bar or capacitor plate location. This makes the contact shorting bar or capacitor plate the focal point of the forces generated by all of the actuators, thereby increasing the switch contact force.

    Abstract translation: MEMS器件使用压电驱动和静电驱动,并且还提供足够的静电力以实现非常低的电压操作。 由于静电致动使用DC并且压电致动器使用高频率,因此该装置的结构将两个致动器结构的耦合最小化以减少噪声。 此外,对于一些实施例,压电致动器和静电致动器的物理结构的位置产生具有较低电压的较高接触力。 对于一些实施例,装置的压电致动器和静电致动器在接触短路杆或电容器板位置连接。 这使得接触短路棒或电容器板是由所有致动器产生的力的焦点,从而增加开关接触力。

Patent Agency Ranking