Abstract:
Power control in a spread spectrum communication system takes place by determining a speed of a remote unit (405) and assigning as a power-control threshold a target threshold based on the determined speed (410). An instantaneous threshold value is created (415) based on frame-quality information and the target threshold. An energy of a power-control group transmitted (430) from a remote unit is compared to the instantaneous threshold value and a power-adjustment command is determined. The power-adjustment command is transmitted to the remote unit instructing the remote unit to adjust its power accordingly.
Abstract:
A code division multiple access (CDMA) communication system (100) has improv ed control by accurately characterizing coverage and loading parameters related to the CDMA communication system (100). To accurately characterize coverage and loading parameters related to the CDMA communication system, parameter meshes corresponding to parameters of the CDMA communication system are generated. The parameter meshes are evaluated, either individually or in combination, to provide comprehensive information regarding the performance of the CDMA communication system. Based on the results of the evaluation, a controller (113) within the CDMA communication system (100) controls the parameters to improve call quality, loading, etc. of the CDMA communication system (100).
Abstract:
Power control in a spread-spectrum communication system takes place by determining origination power of a traffic channel based on a number of active demodulators and pilot channel signal quality (610). Once origination transmit power is determined and call origination takes place, the transmit power is reduced at a first rate when a time is less than a time for all active demodulators to be established (615), otherwise the transmit power is reduced at a second rate (621). After all active demodulators have been acquired power control takes place by receiving a Power Measurement Report Message (PMRM) or a Pilot Strength Measurement Message (PSMM), determining a signal quality metric existing at the remote unit based on the PMRM or PSMM, and adjusting transmit power based on the signal quality metric (645).
Abstract:
A method and apparatus for understanding information relating to communication system performance, including the dynamic nature of the system is provided. Elements of the system are represented (102, 110) as various shapes (30, 32, 40) defined by an number of different parameters on a display device (24). The shapes are characterized by a number of defining parameters and these defining parameters have an association with performance characteristics or performance parameters of the system element. As performance parameter data changes with time, e.g., during system operation, the defining parameters are altered such that the shape representing the system element is modified (106, 114). In this manner a large number of system elements and associated performance characteristics and the time varying nature thereof can be readily displayed to aid the system operator.
Abstract:
An efficient apparatus for performing frequency conversion from a final IF frequency to a baseband frequency is described. A counter (401) generates two logical signals G1 (402) and G2 (403) which are passed to an exclusive-OR gate (404) and a multiplexer (406). When a control signal (411) is deasserted, multiplexer (406) passes signal G1 to I1 and signal G2 to I2; when control signal (411) is asserted, multiplexer (406) passes binary signal G1 to I2 (410) and signal G2 to I1 (407). Similarly, multiplexer (405) swaps its input real and imaginary samples when the output of exclusive-OR gate (404) is asserted; otherwise, it performs no operation on its input samples. Signals I1 (407) and I2 (410) are used to control arithmetic inverters (408) and (409) respectively. When the controlling signal for either inverter is asserted, the inverter performs arithmetic inversion, otherwise it performs no operation.
Abstract:
A method for selective use of control channel element (CCE)-based implicit pointing. The method includes the step of determining whether a number of multiple user elements (UE) within a multi-user multiple-input multiple-output (MU-MIMO) group is greater than the number of resource blocks allocated to the MU-MIMO group. If the number of UEs in the MU-MIMO group is greater than the number of resource blocks allocated to the MU-MIMO group, the method further includes transmitting to each of the UEs of the MU-MIMO group acknowledgements on acknowledgement channels within a first acknowledgement bank and acknowledgements on acknowledgement channels within a second acknowledgement bank. A first portion of the UEs of the MU-MIMO group receives the acknowledgements on the acknowledgement channels within the first acknowledgement bank and a second portion of the UEs of MU-MIMO group receives the acknowledgements on the acknowledgement channels within the second acknowledgement bank.
Abstract:
A wireless communication device for receiving a frame (200) corresponding to a transmission time interval, the frame having a control channel (210) including at least two control channel elements (212, 214) and an embedded bit sequence, the location of which indicates a portion of the control channel used for radio resource assignment, wherein the portion of the control channel used for radio resource assignment may be less than the entire control channel of the frame having the embedded bit sequence, and wherein the at least two frames may use different portions of the control channel for radio resource assignment.
Abstract:
A method and apparatus is provided for transmitting an orthogonal frequency domain multiple access (OFDMA) signal including a synchronization channel signal transmitted within a localized portion of a bandwidth of the OFDMA signal (818), the synchronization channel signal having predetermined time domain symmetry within the localized portion of the bandwidth (816). The synchronization channel signal enables an initial acquisition and cell search method with low computational load which provides OFDMA symbol timing detection and frequency error detection by differential processing of sequence elements of the synchronization channel signal (1112) and frame boundary detection and cell specific information detection (1114) in an OFDMA system supporting multiple system bandwidths, both synchronized and un-synchronized systems, a large cell index and an OFDMA symbol structure with both short and long cyclic prefix length.