Abstract:
Schemes to time-align transmissions from multiple base stations to a termina l. To achieve time-alignment, differences between the arrival times of transmissions from the base stations, as observed at the terminal, are determined and provided to the system and used to adjust the timing at the base stations such that terminal-specific radio frames arrive at the termina l within a particular time window. In one scheme, a time difference between tw o base stations is partitioned into a frame-level time difference and a chip- level time difference. Whenever requested to perform and report time difference measurements, the terminal measures the chip-level timing for eac h candidate base station relative to a reference base station. Additionally, t he terminal also measures the frame-level timing and includes this information in the time difference measurement only if required. Otherwise, the terminal se ts the frame-level part to a predetermined value (e.g., zero).
Abstract:
A method and system that enables multiplexing a plurality of data streams on to one data stream based on data stream priorities and available transport fram e combinations (TFCs) is disclosed. A mobile station 12 has applications that produce separate data streams. Example applications include voice 32, signaling 34, E-mail 36 and web applications 38. The data streams are combin ed by a multiplexer module 48 into one data stream called the transport stream 50. The transport stream 50 is sent over the reverse link to base station transceivers (BTS) 14. The multiplexer module 48 multiplexes the data stream s onto the transport stream according to their priorities and the available TF Cs.
Abstract:
A mobile wireless telecommunications system includes base stations of a first type operating according to a first air interface, and base stations of a second type operating according to a second air interface. Methods and apparatus are provided for handing over a mobile station in the system from a first base station, which is of the first type, to a second base station, which is of the second type. A communications link is established over the first air interface between the mobile station and the first base station. Data are received from the mobile station responsive to a signal received by the mobile station over the second air interface from the second base station, substantially without breaking the communications link with the first base station. The mobile station is handed over from the first to the second base station responsive to the data received therefrom. In particular, a method of conducting intersystem handover from a multicarrier system to a direct spread system is provided. Timing synchronization is also advantageously made available through the mobile station.
Abstract:
A mobile wireless telecommunications system includes base stations (30) of a first type operating according to a first air interface, and base stations (36) of a second type operating according to a second air interface. Methods and apparatus are provided for handing over a mobile station (40) in the system from a first base station (30), which is of the first type, to a seco nd base station (36), which is of the second type. A communications link is established over the first air interface between the mobile station (40) and the first base station (30). Data is received from the mobile station (40) responsive to a signal received by the mobile station (40) over the second a ir interface from the second base station (36), substantially without breaking the communications link with the first base station. The mobile station (40) is handed over from the first (30) to the second base station (36) responsiv e to the data received therefrom.
Abstract:
Exemplary embodiments are directed to methods and devices for fee-based wireless power. A method may include subscribing to a wireless power plan and receiving wireless power at one or more electronic devices according to a wireless power subscription.
Abstract:
Techniques for supporting operation with enhanced uplink in inactive state are described. A user equipment (UE) may send an access preamble for random access while in an inactive state and may receive a message containing resources allocated to the UE. The allocated resources may be selected by a Node B from a pool of resources pre-allocated to the Node B for the enhanced uplink. The UE may send information (e.g., scheduling information and/or its UE identity) to the Node B using the allocated resources. The UE may receive an acknowledgement addressed to the UE based on the UE identity. The UE may remain in the inactive state and continue to use the allocated resources until they are de-allocated. Alternatively, the UE may transition to an active state and either continue to use the allocated resources or receive an allocation of new resources for the active state.
Abstract:
System(s) and method(s) are provided for handover of a mobile terminal in a wireless communication system. Handoff resolution relies on both a downlink channel quality indication between a serving base station and the mobile terminal, and uplink channel quality indications amongst the terminal and a measurement set of target base stations. To generate UL channel quality indicators, the mobile station conveys a narrowband or broadband sounding reference signal, and serving and target base stations measure UL and DL performance metrics (e.g., RSRP, RSSI, or RSOT). In backward handover, UL channel state information from target cells is received at the serving base station through backhaul communication, and handoff is resolved based on both UL and DL quality reports. In forward handover, the set of UL quality reports are conveyed to the mobile station to determine a target cell for handoff.
Abstract:
A system, apparatus, and method provides location services to a mobile station by employing equipment identity information. In one aspect of the present inventive concept, a location server uses the equipment identity information of a mobile station in order to select the best protocol for LCS communication. In another aspect of the inventive concept, a mobile station uses the equipment identity information of a location server to select the best protocol to use for LCS communication. Advantageously, the equipment identity information can be used to correct manufacturing defects, fix design flaws and software bugs, track performance, optimize performance, or any combinations thereof. Information about features and defects relating to equipment identity information may be determined and stored for future use.
Abstract:
A mobile wireless telecommunications system includes base stations (30) of a first type operating according to a first air interface, and base stations (36) of a second type operating according to a second air interface. Methods and apparatus are provided for handing over a mobile station (40) in the system from a first base station (30), which is of the first type, to a second base station (36), which is of the second type. A communications link is established over the first air interface between the mobile station (40) and the first base station (30). Data is received from the mobile station (40) responsive to a signal received by the mobile station (40) over the second air interface from the second base station (36), substantially without breaking the communications link with the first base station. The mobile station (40) is handed over from the first (30) to the second base station (36) responsive to the data received therefrom.
Abstract:
Techniques for sending data during handover with Layer (2) tunneling are described. In one design, a user equipment (UE) sends first Layer (2) packets to a source base station prior to handover to a target base station. The UE sends at least one second Layer (2) packet to the target base station, which identifies the second Layer (2) packet(s) as being intended for the source base station and thus forwards the second Layer (2) packet(s) to the source base station via a Layer (2) tunnel. The UE sends third Layer (2) packets to the target base station after the handover. The target base station processes the third Layer (2) packets to obtain IP packets and sends the IP packets to a serving gateway after a trigger condition, which may be defined to achieve in-order delivery of IP packets from the source and target base stations to the serving gateway.