Abstract:
A charge flow circuit for a time measurement, including a plurality of elementary capacitive elements electrically in series, each elementary capacitive element leaking through its dielectric space.
Abstract:
An integrated circuit may include a region containing a thermoelectric material and be configured to be subjected to a temperature gradient resulting from a flow of an electric current in a part of the integrated circuit during its operation, and an electrically conducting output coupled to the region for delivering the electrical energy produced by thermoelectric material.
Abstract:
An integrated circuit includes a substrate and at least one NMOS transistor having, in the substrate, an active region surrounded by an insulating region. The insulating region is formed to includes at least one area in which the insulating region has two insulating extents that are mutually separated from each other by a separation region formed by a part of the substrate.
Abstract:
An integrated circuit, comprising an electrical-switching mechanical device in a housing having at least one first thermally deformable assembly including a beam held in at least two different locations by at least two arms secured to edges of the housing, the beam and the arms being metallic and situated within the same first metallization level and an electrically conductive body, wherein the said first thermally deformable assembly has at least one first configuration at a first temperature and a second configuration when at least one is at a second temperature different from the first temperature, wherein the beam is at a distance from the body in the first configuration and in contact with the said body and immobilized by the said body in the second configuration and establishing or prohibiting an electrical link passing through the body and through the beam.
Abstract:
The disclosure relates to a method of reading and writing memory cells, each including a charge accumulation transistor in series with selection transistor, including applying a selection voltage to a gate of the selection transistor of the memory cell; applying a read voltage to a control gate of the charge accumulation transistor of the memory cell; applying the selection voltage to a gate of the selection transistor of a second memory cell coupled to the same bitline; and applying an inhibition voltage to a control gate of the charge accumulation transistor of the second memory cell, to maintain the transistor in a blocked state.
Abstract:
An integrated circuit comprising a mechanical device for electrical switching comprising a first assembly being thermally deformable and having a beam held at at least two different locations by at least two arms, the beam and the arms being metal and disposed within the same metallization level, and further comprising at least one electrically conducting body. The first assembly has a first configuration at a first temperature and a second configuration at a second temperature different from the first temperature. The beam is out of contact with the electrically conducting body in one configuration in contact with the body in the other configuration. The beam establishes or breaks an electrical link passing through the said at least one electrically conducting body and through the said beam in the different configurations.
Abstract:
An integrated circuit, comprising a capacitive device having a thermally variable capacitive value and comprising a thermally deformable assembly disposed within an enclosure, and comprising an electrically-conducting fixed body and a beam held at least two different locations by at least two arms rigidly attached to edges of the enclosure, the beam and the arms being metal and disposed within the first metallization level. A part of the said thermally deformable assembly may form a first electrode of the capacitive device and a part of the said fixed body may form a second electrode of the capacitive device. The thermally deformable assembly has a plurality of configurations corresponding respectively to various temperatures of the said assembly and resulting in a plurality of distances separating the two electrodes and various capacitive values in the capacitive device corresponding to the plurality of distances.
Abstract:
Methods of operating a switching device are provided. The switching device is formed in an interconnect, the interconnect including a plurality of metallization levels, and has an assembly that includes a beam held by a structure. The beam and structure are located within the same metallization level. Locations of fixing of the structure on the beam are arranged so as to define for the beam a pivot point situated between these fixing locations. The structure is substantially symmetric with respect to the beam and to a plane perpendicular to the beam in the absence of a potential difference. The beam is able to pivot in a first direction in the presence of a first potential difference applied between a first part of the structure and to pivot in a second direction in the presence of a second potential difference applied between a second part of the structure.
Abstract:
An integrated circuit includes a semiconductor substrate, a conductive layer above a front face of the substrate, a first metal track in a first metal level, and a pre-metal dielectric region located between the conductive layer and the first metal level. A metal-insulator-metal-type capacitive structure is located in a trench within the pre-metal dielectric region. The capacitive structure includes a first metal layer electrically connected with the conductive layer, a second metal layer electrically connected with the first metal track, and a dielectric layer between the first metal layer and the second metal layer.
Abstract:
A diode is formed by a polycrystalline silicon bar which includes a first doped region with a first conductivity type, a second doped region with a second conductivity type and an intrinsic region between the first and second doped regions. A conductive layer extends parallel to the polycrystalline silicon bar and separated from the polycrystalline silicon bar by a dielectric layer. The conductive layer is configured to be biased by a bias voltage.