Abstract:
In an elevator control device that transfers an elevator to pause operation when predetermined pause conditions are met, the elevator operation can be changed over properly according to the call cutoff state without decreasing the building security. This control device includes a pause operation selecting means and a car call cutoff means. The pause operation selecting means stops a car at a predetermined pause floor, closes a door after door opening motion, and pauses the elevator by selecting pause operation if predetermined pause conditions are met. The car call cutoff means prohibits a car call from being registered from a car call button in the car by cutting off the car call. The configuration is made such that when the car call to the pause floor has been cut off by the car call cutoff means, even if the predetermined pause conditions are met, the elevator is not transferred to pause operation.
Abstract:
The movement of a plurality of elevator cars (12, 14) in an elevator hoistway (16) is coordinated for situations in which the regions of the hoistway that are serviceable by the cars (12, 14) at any given time are configured to overlap. A car stop plan for each elevator car (12, 14) is generated that includes a sequence of stops for servicing demand assigned to the elevator car (12, 14). Operation of the elevator cars (12, 14) is then coordinated based on the car stop plans such that each elevator car (12, 14) services its assigned demand without interfering with the car stop plans of any other of the plurality of elevator cars (12, 14).
Abstract:
An elevator group control apparatus collectively controls an elevator system where at least two cars can travel in each shaft independently of each other. The apparatus has a destination floor registration device installed at each hall for passengers to register destination floors and to indicate to passengers which cars will serve respectively for the registered destination floors. Priority zones and a shared zone for upper cars and for lower cars are set; judgment is made as to whether the shared zone set can be entered by an upper or lower car; a car is put on standby based on the judgment a car is sent to a withdrawal floors, as necessary, after a service is completed. A car is selected as a candidate for assignment to a destination call if, according to the destination to be served by each car and the zones set for each car, so that the car would cause neither collision nor safety stop; and a car is assigned based on the selection.
Abstract:
A method schedules cars of an elevator system in a building. The method begins execution whenever a newly arrived passenger presses an up or down button to generate a call for service. For each car, determine a first waiting time for all existing passengers if the car is assigned to service the call, based on future states of the elevator system. For each car, determine a second waiting time of future passengers if the car is assigned to service the call, based on a landing pattern of the cars. For each car, combine the first and second waiting times to produce an adjusted waiting time, The method ends by assigning a particular car having a lowest adjusted waiting time to service the call and minimize an average waiting time of all passengers.
Abstract:
A method controls the distribution of free cars in an elevator system. First, the number of free cars in the elevator system are counted whenever this number changes. At the same time, the arrival/destination rates of passengers at each of the floor is determined. The rates are used to identify up-peak and down-peak traffic patterns. The floors of the building are then assigned to zones. The number of floors in each zone is determined according to the arrival rates, and the free cars are then parked in the zones so that the expected waiting time of the next arriving passenger is minimized.
Abstract:
In an elevator system in which two cars operate in each shaft, there is provided an elevator group control apparatus providing efficient services while preventing collisions of cars in each shaft. The elevator group control apparatus includes a traffic detection part which detects data of car traffic generated in a building; a zone setting part which sets a dedicated zone and a common zone for each of upper and lower cars in accordance with detection by the traffic detection part; an assignment decision part which decides a car to be assigned to a call generated at a hall in accordance with the call generation floor, direction of response to the call, and a zone set by the zone setting part; an entry determination part which, when a first of two cars in each shaft is coming into the common zone from its dedicated zone, determines, based on position, direction of movement, and state of the other car in the same shaft, whether the first car in each shaft is permitted to enter the common zone; a passing-by instruction part which gives a passing-by instruction to a prescribed floor in the dedicated zone to make each car exit from the common zone to its dedicated zone after each car has entered the common zone; and an operation control part which controls operation of each car based on a decision by the assignment decision part, a determination by the entry determination part, and an instruction by the passing-by instruction part.
Abstract:
A rule base storing control rule sets simulates the behavior of each car of an elevator system in real time by assigning scanning to each car which is caused to run until the direction of running is reversed, while applying a specified rule set in the rule base to the current traffic condition, and predicts group supervisory control performance upon application of the specified rule set. In response to the results of performance prediction, an optimal rule set is selected and a real time simulation can be carried out during a group supervisory control operation, so that group supervisory control can be performed on multiple elevator cars while applying the optimal rule set at all times, thus providing excellent service.
Abstract:
The present invention prepares a rule base storing a plurality of control rule sets, simulates the behavior of each car in real time by assigning scanning to each car which is caused to run until the direction of running thereof is reversed while applying a specified rule set in the rule base to the current traffic condition, and predicts group supervisory control performance which is obtained upon application of the specified rule set. In response to the results of performance prediction, an optimal rule set is selected and a real time simulation can be carried out during a group supervisory control operation, so that group supervisory control can be performed on a plurality of elevators while applying thereto the optimal rule set at all times, thus providing excellent service.
Abstract:
A system and method for controlling an elevator group including several elevators and related call devices which controls each elevator in a manner determined by the calls entered and the existing control instructions. When the control system has to decide between two or more control alternatives, a systematic decision analysis is performed by studying the effects resulting from each alternative decision, the effects resulting from each alternative decision, the effects being estimated by simulating by a Monte-Carlo type method the future behavior of the elevator system in the case of each alternative decision. To carry out the simulation, realizations are generated at random for the unknown quantities associated with the current state of the elevator system and for new external future events, and a control decision is made on the basis of the results of the decision analysis.
Abstract:
Factors (IFL, UPK, DPK) indicative of the relative need for an elevator system to be operating in off-peak, up-peak and down-peak modes, respectively, are compared and if the relative need for up-peak is greater than for off-peak or down-peak, the ratio of up-peak need to total need is utilized to assign a proportionate number of elevator cars to up-peak service. Cars are chosen for up-peak service based upon the estimated relative speed with which the cars will be able to return to the lobby. The details of one embodiment include determining interfloor traffic by examining expected destinations of passengers estimated to be waiting behind hall calls and examining the lobby and non-lobby car calls which are registered.