Abstract:
A polymeric scaffold contains pendant liquid crystal side chains and has fully interconnected pores. Such a polymeric scaffold will preferably be 3D in nature and elastomeric, biocompatible and biodegradable. Such 3D liquid crystal elastomer (LCE) scaffolds can be used for various biomedical applications, including cell culture applications. A method for the production of such a polymeric scaffold containing liquid crystals and having interconnected pores is also disclosed that uses a metal foam sacrificial template as a scaffold to produce the polymeric smart response scaffold of the present invention. Consistent and controlled pore sizes result from etching the sacrificial metal foam template away from the polymeric scaffold, permitting the incorporation of growth factors, when needed, for enhancing cell viability and proliferation.
Abstract:
A method of making a nanoporous structure comprising a matrix and at least one nanosized pore within the matrix, wherein the method comprises contacting at least a portion of a templated matrix with an acid solution, wherein the templated matrix comprises a matrix that selected from the group consisting of an organic polymer, a sol-based ceramic, an inorganic salt, an organoaluminate, and combinations thereof, and one or more nanosized templates within the matrix, wherein each nanosized template comprises a core that comprises an inorganic oxide, to dissolve at least a portion of the inorganic oxide of at least one of the cores and form the at least one nanosized pore within the matrix thereby forming the nanoporous structure.
Abstract:
A method of making a silicone rubber having a structure adapted for growth of cells or living tissue, which comprises contacting a silicone rubber precursor with a biologically-acceptable sacrificial filler, curing the resultant mixture and removing the sacrificial filler to form a structured silicone rubber.
Abstract:
A method of making a silicone rubber having a structure adapted for growth of cells or living tissue, which comprises contacting a silicone rubber precursor with a biologically-acceptable sacrificial filler, curing the resultant mixture and removing the sacrificial filler to form a structured silicone rubber.
Abstract:
The present document provides details of a nanostructured material defined by an anodized alumina having a nanostructure with transverse pores that pass through and connect longitudinal pores grown on an aluminium substrate. This document also describes the process for producing said nanostructured material and the possible use thereof as a template or mould for obtaining nanostructures formed by nanowires, which are generated in the cavities or pores of the aforementioned nanostructure of the nanomaterial of the invention. Likewise, this document details the use of the nanostructured anodized alumina material as a mould for producing nanostructures.
Abstract:
The present document provides details of a nanostructured material defined by an anodized alumina having a nanostructure with transverse pores that pass through and connect longitudinal pores grown on an aluminium substrate. This document also describes the process for producing said nanostructured material and the possible use thereof as a template or mould for obtaining nanostructures formed by nanowires, which are generated in the cavities or pores of the aforementioned nanostructure of the nanomaterial of the invention. Likewise, this document details the use of the nanostructured anodized alumina material as a mould for producing nanostructures.
Abstract:
The invention provides a particulate material comprising porous polymeric microparticles having a mesoporous structure. A process for making the particles is also presented. The process comprises impregnating a porous microparticulate template material with a liquid comprising one or more monomers. The one or more monomers are then polymerized in and/or on the template material to form a polymer, and the template material is then removed to produce the particulate material.
Abstract:
A porous polyimide having a new structure is provided which offers excellent low dielectric properties and sufficient mechanical strength. A porous polyimide is obtained by removing a silica phase from an organic-inorganic polymer hybrid which has a molecule structure in which a polyimide phase and the silica phase are held together by covalent bond.
Abstract:
The invention provides a particulate material comprising porous polymeric microparticles having a mesoporous structure. A process for making the particles is also presented. The process comprises impregnating a porous microparticulate template material with a liquid comprising one or more monomers. The one or more monomers are then polymerised in and/or on the template material to form a polymer, and the template material is then removed to produce the particulate material.