Abstract:
A rapid, batch Koch carbonylation/functionalization reaction of at least one polymer olefin, carbon monoxide, and an aliphatic or aryl alcohol in the presence of an acid catalyst with either an alcohol:polymer olefin mole ratio .gtoreq.1:1, or an acid catalyst:polymer olefin mole ratio .gtoreq.0.9:1, or both, and recovering at least 80% functionalized polymer which is predominantly ester.
Abstract:
A Koch functionalized product which is the reaction product of at least one polymer having a number average molecular weight of at least 500 and at least one ethylenic double bond per polymer chain, with carbon monoxide and a nucleophilic trapping agent. The invention includes functionalized polymer, derivatives thereof and methods of making the same.
Abstract:
A method of de-hazing distillate fuel is disclosed which comprises adding to the fuel a solution of a halide salt dissolved in an alcohol, and an alcohol soluble organosiloxane. The halide salt may be the chloride of magnesium, cadmium, copper, nickel or the tetra methyl ammonium group, for example the salt may have the formula MgCl.sub.2.6H.sub.2 O or (CH.sub.3).sub.4 NCl. The organosiloxane may be a cyclic, linear or branched material and may have e.g. a minor amount of siloxane units having the general formula ##EQU1## and a minor amount of siloxane units having the general formula ##EQU2## in which each R represents a substituted or unsubstituted hydrocarbon group of up to ten carbon atoms, a has the value 0, 1, 2, or 3, b has the value 0, 1 or 2, c has the value 1 or 2, and each Z represents a group linked to the silicon atom and comprising a functional organic group. Each group Z may be a group selected from the polyoxyalkylene group R'(OCH.sub.2 CH.sub.2).sub.p (OCH.sub.2 CH.CH.sub.3).sub.r OR", the amine group R'NHQ, the quaternary ammonium salt R'NR.sub.3.sup.2 X, the carboxylate group R'CO.sub.2 M, the sulphonate group R'SO.sub.3 M, or the hydroxyl group, in which R' represents a group which provides a link to the silicon atom through an oxygen or a carbon atom, p has a value in the range 1 to 100, r has a value in the range 0 to 50, the sum of p and q is in the range 2 to 100, R" represents a hydrogen atom, an alkyl group or an acyl group, Q represents a hydrogen atom or a group R'NHQ, each R.sup.2 represents an alkyl group, X represents a halide ion and each group M represents a cation.
Abstract:
A method of defoaming crude hydrocarbon stocks comprising adding to the hydrocarbon stock at least 1 part per million of a fluorosilicone copolymer having from 20 to 70 mole percent of fluorosilicone siloxy units.
Abstract:
A diesel fuel additive for use in association with bio-diesel fuel and/or petroleum derived diesel fuel having one or more solvent(s) and one or more pour-point depressant(s), wherein the pour-point depressant(s) include a polyglycerol ester, such as polyglycerol polyricinoleate and/or polyglycerol esters of mixed fatty acids. Augmentive agents may include ethylene vinyl acetate and/or polyethylene vinyl acetate.
Abstract:
The invention relates to a method for separating emulsions of oil and water, the method comprising incorporating a demulsifying-effective amount of a silicone demulsifier into an emulsion comprising an oil phase and an aqueous phase, the silicone demulsifier having a molecular structure comprising a polysiloxane backbone of at least two siloxane units covalently bound to (i) one or more alkylene oxide groups comprising one or more alkylene oxide units independently having one to five carbon atoms, and (ii) one or more oxirane-containing and/or oxetane-containing groups, wherein said oxirane or oxetane is optionally ring-opened by reaction with a chemical or group capable of ring-opening an oxirane or oxetane ring, respectively, and wherein a solid filler is substantially excluded from the silicone demulsifier and emulsion. The invention also relates to compositions containing the above-described demulsifier and the water and oil phases of an emulsion.