Abstract:
Mesh cells (30) for machine-made netting (51) use pairs of mesh bars (35) made from a continuous length of material and meet at a common coupler (34). Such mesh bars (35) have a lay with a common direction throughout the length of material. In a zig-zag pattern used in knitting machine-made netting (31), the longitudinal axis of symmetry (38) of mesh bars (35) turns at each coupler (34). Towing such mesh bars (35) causes water to flow past pairs thereof in two different directions with respect to their common lay. The directions of water flow are neither parallel nor perpendicular to the longitudinal axis of symmetry (38) of the mesh bars (35). As water flows past the mesh bars (35), the cross-sectional shapes of the mesh bars (35) produce a net component of force that is oriented in a direction perpendicular to a combined drag component of force for the mesh bars (35).
Abstract:
The invention is directed to a jacketed mooring rope (1) comprising a core rope (2) and a jacket (3) surrounding said core rope, wherein the jacket comprises a braided layer of level 2 braided strands (30) and wherein said level 2 braided strands each comprise a plurality of level 1 braided strands (40). In another aspect, the invention is directed to a rope (30) for use in the jacket (3) of the jacketed mooring rope (1), wherein said rope (30) comprises a plurality of level 1 braided strands (40) that each comprise a plurality of braided yarns (50) surrounding one or more core yarns (51), wherein the braided yarns and the core yarns comprise fibers having a yarn count of at least 440 den; a tenacity of at least 5 g/den; and/or a modulus of at least 100 g/den.
Abstract:
A hybrid rope (40) or a hybrid strand (50) comprising a core element (42, 52), a first (44, 54) and a second (46, 56) metallic closed layer surrounding said core element (42, 52). The core element (42, 52) includes a bundle of synthetic yarns. The first metallic closed layer (44, 54) includes a plurality of first strands of wires helically twisted together with the core element (42, 52) in a first direction. The second metallic closed layer (46, 56) includes a plurality of second wires or strands helically twisted together with said core element (42, 52) and said first metallic closed layer (44, 54) in a second direction. The cross-sectional area of the core element (42, 52) is larger than the total cross-sectional area of the first (44, 54) and second (46, 56) metallic closed layers. A corresponding method of producing such a hybrid rope or hybrid strand is also disclosed.
Abstract:
The present invention relates to a rope for an elevator. The rope for the elevator comprises: a center strand formed by twisting a plurality of wires; inner layer strands formed by twisting the plurality of wires and arranged along the outer periphery of the center strand; and outer layer strands formed by twisting the plurality of wires and arranged along the outer periphery of the inner layer strands, wherein ten of each of the inner layer strands and the outer layer strands are prepared, the diameter of the center strand, the diameter of the inner layer strand and the diameter of the outer layer strand are respectively 0.33-0.35 times, 0.13-0.15 times and 0.22-0.24 times as large as the diameter of a first imaginary circle circumscribed around the outer layer strands, and a fill factor is 64-67%.
Abstract:
A cord material suitable for use in lined textile structures with a gliding component includes a plurality of uniform strands, and a deviant strand. The deviant strand is different from the uniform strands in some characteristic affecting aerodynamic or hydrodynamic properties of the cord, such as size or surface properties. Each uniform strand can have a substantially equal cross section area, while the deviant strand has a cross section area at least five times greater than one of the uniform strands. The strands can be braided or woven together. A major benefit of the material can be that vibration induced drag is significantly reduced or eliminated in lines made with the material. Another advantage is that lines made from the material can have more consistent, predictable line drag, which can improve the quality of handling.
Abstract:
In an elevator rope, a plurality of steel outer layer strands are twisted together on an outer circumference of an inner layer rope. The inner layer rope has: a fiber core; a plurality of steel inner layer strands that are twisted together directly onto an outer circumference of the fiber core; and a resin inner layer rope coating body that is coated onto the outer circumference. A diameter of the inner layer strands is smaller than a diameter of the outer layer strands. The inner layer strands are greater in number than the outer layer strands.
Abstract:
A belt for suspending and/or driving an elevator car includes a plurality of wires arranged into a plurality of cords. The plurality of cords includes one or more inner cords located at an innermost portion of the belt relative to a lateral end of the belt and one or more outer cords located laterally outboard of the one or more inner cords. The one or more outer cords have a construction distinct from the one or more inner cords. A jacket substantially retains the plurality of cords.
Abstract:
A high-security cable is provided, wherein the high-security cable is capable of achieving a smoothing of a work-to-break energy curve. The high-security cable is manufactured of a mixture of plastic yarns or of plastic yarns and metal wires, wherein the cable comprises a first constituent part of untwisted or twisted yarns, or untwisted or twisted yarns and metal wires, a second constituent part of doubled yarn, the doubled yarn manufactured of plastic yarns or of plastic yarns and metal wires, and a third constituent part of cord manufactured from the doubled yarns, wherein the doubled yarn is manufactured from plastic yarns or of plastic yarns and metal wires. The high-security cable can be used as a safety arrester cable, and can also be used to form a netting to serve as safety arrester netting or falling-rock protection netting.
Abstract:
The object of the invention is a traction sheave elevator and a rope (3) that contains metal as a load-bearing material, such as the suspension rope of an elevator, which rope comprises at least one or more strands (7) laid from metal wires (9) and which rope (3) is lubricated with a lubricant (8). Another object is the use of the aforementioned lubricant for lubricating the rope (3). The lubricant (8) comprises at least oil and thickener, which thickener in the lubricant (8) comprises at least 10% or more of the mass of the lubricant (8).
Abstract:
A reduced drag cable for use in vertical wind tunnels and other applications with a change in the spacing and/or size of the strands of a standard twisted wire cable is disclosed. The perimeter strands of one embodiment all have a standard diameter, with the exception of one or more wires with different diameter from the other perimeter strands. The different sized strand forms a helical feature around the cable, creating a non-circular profile to reduce drag in air.